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Abstract: 

This paper examines the effects of an R&D team’s composition on its performance outcomes 
in hypercompetition. The fundamental feature of firms in hypercompetitive settings is that they 
are constantly challenged to improve their competitiveness in a relentless race to outperform 
one another and it is not clear whether firm R&D teams in these settings follow the same 
paradigms as teams in more stable environments. Analyzing a unique data set from the Formula 
1 motorsport racing industry, we find an inverse U-shaped relationship between a team’s 
diversity in task-related experience and its performance – an important result that diverges from 
well-established theories developed in more stable environments. Fundamentally, we also show 
that the role of R&D team diversity in experience varies depending on the size of the 
organizations in which R&D teams operate. While we find a moderating effect for firm age, 
this effect is not as robust as the effect of firm size. Overall, our findings provide several novel 
implications for the strategy, innovation, and team literatures. 
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INTRODUCTION 

Over the course of the past two decades, strategy scholars have directed their attention to the 

hypercompetitive nature of many business environments (D’Aveni, 1994; Hambrick, Cho and 

Chen, 1996; Wiggins and Ruefli, 2005; Sirmon, Hitt, Arregle and Campbell, 2010; McGrath, 

2013), emphasizing that it has become increasingly difficult for firms to remain competitive 

due to intense rivalry, rapid technological change, and high rates of knowledge obsolescence 

(Eisenhardt, 1989; Bettis and Hitt, 1995; Davis, Eisenhardt and Bingham, 2009; D’Aveni, 

Dagnino and Smith, 2010). Under such uncertain and volatile conditions, firms are in an 

“incessant race to get or keep ahead of one another” (Kirzner, 1973: 20). 

As can easily be imagined, hypercompetitive environments place critical demands on 

R&D teams, given that they operate at the locus of firms’ inventive activity and are thus one of 

the most important inputs to the innovation process (Cardinal, 2001; McGrath, 2013). These 

teams not only have to keep up with the rapid pace of technological change, but they are also 

challenged to overtake competitors’ inventive efforts to bolster their performance (Eisenhardt, 

1989; Legnick-Hall and Wolff, 1999). Yet, not just any type of R&D team can achieve the 

desired performance outcomes in these extreme conditions. Indeed, research on teams operating 

in highly demanding, uncertain conditions (e.g., fire fighters, SWAT teams, cf. Weick, 1993; 

Klein, Ziegert, Knight and Xiao, 2006; Weick and Sutcliffe, 2007; Bechky and Okhuysen, 

2011) has suggested that it is not only the set-up of a team (in particular, the cognitive resources 

that a team has at its disposal) that is critical to team performance, but also the preexisting 

material, cognitive, and social resources that the team can access in its organization (cf. Baker 

and Nelson, 2005; Miner, Bassof and Moorman, 2001). 

Regrettably, we know less than we should about R&D teams operating in 

hypercompetition – either in terms of how they should be optimally configured to accomplish 

their challenging work, or in terms of the organizational context that is most conducive to a 

successful performance. However, given that an increasing number of firms are confronted with 
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hypercompetition, it becomes essential to go beyond merely assuming, or speculating, that 

existing insights derived from research in more stable environments can be transposed to such 

extreme settings.1 In fact, we have reason to believe that they are not: while a meta-analysis of 

35 published team studies indicates a positive relationship between the task-related experience 

diversity of teams and their performance (Horwitz and Horwitz, 2007), it has to be 

acknowledged that greater levels of diversity imply increasing communication and coordination 

costs and, thus, could lead to a slowdown of the R&D process – which is particularly 

problematic in the fast-paced environment of hypercompetition. These costs may at some point 

become so large that they could outweigh any gains from increased diversity, and team 

performance may actually start to decrease – which suggests an inverse U-shaped relationship 

instead of a positive relationship. Moreover, the existing literature on the team composition–

performance relationship tends to be agnostic to the organizational contexts in which teams are 

embedded (Joshi and Roh, 2009). Yet, as the handful of qualitative studies investigating teams 

in extreme settings indicate, the organizational context is a fundamental factor that shapes team 

performance outcomes in hypercompetition.  

Given these observations, the present study is not only interested in better understanding 

how teams should optimally be configured (in terms of their task-related diversity in 

experience) to achieve superior performance outcomes in hypercompetition, but also how the 

organizational context (in particular, the size and age of an organization) affects the team 

diversity in experience–performance relationship in this extreme setting.  

We test our set of hypotheses using data from the Formula 1 (F1) motorsport industry. 

F1 data have recently been used in management research to examine market relationships 

(Castellucci and Ertug, 2010), knowledge spillovers (Solitander and Solitander, 2010), 

                                                            
1 This notion echoes more general arguments put forward by strategy scholars pointing out that theories that build 
on ideas of relative stability rather than rapid change and on the achievement of sustainable rather than temporary 
advantage (D’Aveni, 1994; Lee, Venkatraman, Tanriverdi and Iyer, 2010) could be of limited value to our 
understanding of the factors driving performance in hypercompetition – or, even worse, may provide misleading 
insights (D’Aveni et al., 2010; McGrath, 2013). 



4 

technology evolution (Jenkins and Floyd, 2001), competitive balance (Mastromarco and 

Runkel, 2009), as well as agglomeration and cluster effects (Pinch and Henry, 1999). The F1 

context is particularly well-suited to the focal interest of our research because it is a highly 

competitive, fast-paced industry, characterized by the fact that race car R&D teams’ 

performance depends on their ability to continuously innovate and improve their cars’ speed. 

In the truest sense, these constructors are in an “incessant race to get or keep ahead of the 

competition”, as Kirzner’s (1973: 20) quote from our introductory paragraph suggests. 

Our unique data set covers the upper echelons of eighty-eight F1 R&D divisions 

(henceforth referred to as “R&D teams”) that built a total of 141 race cars during the period 

1993 to 2008. For these cars, we observe 2,359 qualifying outcomes in F1 World Championship 

Grand Prix races and can draw on precise and objective R&D team performance data over the 

entire sample period. The fine-grained nature of our data is essential to research seeking to 

understand the drivers of R&D team performance in hypercompetition, as important 

relationships could be masked when only course-grained data is available (D’Aveni et al., 

2010). We observe performance in the rhythm of Grand Prix races, i.e., every other week during 

the racing season. 

BACKGROUND 

Hypercompetition and the limited sustainability of competitive advantage 

As previous authors have stressed, hypercompetition is the result of strategic maneuvering 

among competing firms (D’Aveni, Canger, and Doyle, 1995; Markides, 1999). In his seminal 

contribution, D’Aveni (1994: 217-218) has defined hypercompetition as “an environment 

characterized by intense and rapid competitive moves, in which competitors must move quickly 

to build advantage and erode the advantage of their rivals.” Along these lines, scholars such as 

Bettis and Hitt (1995) and McGrath (2013) have stressed that hypercompetition is characterized 

by a sustained pace of technological development and the shortening of product life cycles. 

Others have provided evidence suggesting that it has become more difficult for managers to 
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sustain their firms’ competitive advantages over time due to intense competition (Thomas and 

D’Aveni, 2009).  

The notion of hypercompetition builds on ideas originating from the Austrian economics 

school of thought and, in particular, Schumpeterian theory (Schumpeter, 1939; Kirzner, 1973). 

Schumpeter (1939: 105) argued that firm profit is “the premium put upon successful innovation 

in capitalist society and is temporary by nature: it will vanish in the subsequent process of 

competition and adaptation.” Thus, as a result of rapid creative destruction, firms are challenged 

to constantly develop innovative solutions that allow them to renew their competitiveness over 

time (Wiggins and Ruefli, 2005; D’Aveni et al., 2010; McGrath, 2013). While scholars have 

assumed the existence of sustainable competitive advantage since the 1970s and expended 

considerable effort to investigate its antecedents and implications for firm performance, we are 

just beginning to understand what it means for firms to establish ever new, short-lived 

advantages in hypercompetitive settings (e.g., Chen and MacMillan, 1992; Lengnick-Hall and 

Wolff, 1999; D’Aveni et al., 2010).  

R&D teams in hypercompetition 

The nature of hypercompetitive environments places challenging demands on the firms’ 

innovation process and, in particular, on their R&D teams, as they govern and shape this process 

– from the identification and formulation of problems, to their exploration, interpretation, and 

solving, and, finally, the dissemination and implementation of solutions (Eisenhardt and 

Tabrizi, 1995; Dixon, 1999; Eisenhardt and Martin, 2000). It is key to recognize that R&D 

teams operating in hypercompetitive settings must accomplish their work under extreme 

conditions: they face enormous time pressure, are constantly challenged to perform at the 

highest level, and have to deal with uncertain information and volatile conditions (Eisenhardt, 

1989; Bettis and Hitt, 1995; Davis et al., 2009). For instance, in their day-to-day work they 

must to anticipate the moves of competing firms, deal with high rates of knowledge 
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obsolescence, and quickly absorb new technological knowledge, as well as generate their own 

innovations at a rapid pace (MacMillan, 1989).  

Although scholars have emphasized the manifold challenges associated with 

accomplishing rapid innovation in hypercompetition (e.g., D’Aveni et al., 2010; McGrath, 

2013), we know surprisingly little about the characteristics that R&D teams operating under 

such extreme conditions must have to achieve superior performance outcomes. 

Yet, to obtain initial insights as well as guidance for our study, it is useful to turn to 

research that has studied teams facing highly challenging conditions in their work – similar to 

those encountered by teams operating in hypercompetition. We are referring specifically to 

teams of fire fighters, SWAT teams, extreme action medical teams, or film production crews 

(e.g., Weick, 1993; Klein, Ziegert, Knight and Xiao, 2006; Weick and Sutcliffe, 2001; Bechky 

and Okhuysen, 2011). Existing research has shown that teams working in these contexts face 

severe time pressure, must accomplish their work in uncertain settings and dispose of 

incomplete information (Klein, Ziegert, Knight and Xiao, 2004).  

Importantly, this body of work suggests that to understand team performance in extreme 

settings both team as well as organizational characteristics must be considered (Moorman and 

Miner, 1998a; Klein et al., 2006; Bechky and Okhuysen, 2011). This research points out that 

team members do not only have to possess strong task-related experience but must also function 

in an almost seamless way as a team so that they can react quickly and flexibly to unforeseen 

occurrences or events (Weick, 1993; Klein et al., 2006). In particular, in their in-depth study of 

the work of SWAT teams and film crews, Bechky and Okhuysen (2011) find that to respond to 

rapidly changing, surprising conditions, these teams rely heavily on interpersonal collaboration 

and have a strong common understanding of the tasks to be completed (cf. Klimoski and 

Mohammed, 1994; Cannon-Bowers and Salas, 2001), that is, an understanding that builds on 

joint workflow expectations and allows the team to take action in a coordinated manner. 

Furthermore, the way in which these teams respond to changing conditions showed several 
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characteristics of bricolage and improvisational action (i.e., forms of real-time organizational 

learning): team members shifted roles, created novel interpretations of their work, and 

reorganized their routines to reach the level of flexibility required by their dynamic task 

environment (cf. Eisenhardt and Brown, 1998; Weick, 1993; Miner et al., 2001; Baker and 

Nelson, 2005). 

It is important to recognize that the flexibility-enhancing cognitions, actions, and 

processes of teams operating in extreme settings are supported in key ways by the presence of 

preexisting organizational resources. Specifically, over time, organizations build up troves of 

material, social, and cognitive resources that facilitate bricolage and improvisational actions as 

they allow teams to quickly utilize them in novel ways when responding to dynamic changes 

in the task environment (Bigley and Roberts, 2001; Miner et al., 2001; Bechky and Okhuysen, 

2011). For instance, Moorman and Miner (1998b) argued that the declarative and procedural 

memory of organizations affect the novelty and speed of improvisational action. 

Overall, this small and growing body of literature on teams operating in extreme settings 

sheds important light on how team-level as well as organizational-level features, and their 

interplay, affect performance outcomes. At the team level, it is both the expertise possessed by 

individual members and their ability to thoroughly understand the work of other team members 

that generate the type of strong flexibility that is required to prepare for, proactively shape, and 

reactively respond to rapidly evolving task environments. At the organizational level, it is the 

stock of material, social, and cognitive resources that critically supports teamwork, as it 

enlarges and enriches the teams’ potential for action and flexible response. 

These insights have important implications for the conceptual framework guiding our 

own study. Specifically, in order to understand how R&D teams operate under the extreme 

conditions posed by hypercompetition, our research needs to capture both the characteristics of 

R&D teams and key organizational features, as the latter shape the material, cognitive, and 

social resources on which these teams will be able to draw when they engage in their work. 
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HYPOTHESES 

In the following, we develop three hypotheses investigating how the composition of R&D teams 

affects their performance under the extreme conditions of hypercompetitive environments. 

Specifically, in our baseline analysis, we study how the diversity of R&D teams’ experience 

endowments affects performance outcomes under such conditions (Hypothesis 1). Building on 

this baseline relationship, we enrich our theorizing by taking into account that the organizational 

setting in which these teams operate will differ in terms of the material, cognitive, and social 

resources available to teams when they are seeking to accomplish their demanding work. In 

particular, we examine how the size of the firm (Hypothesis 2) and the age of the firm 

(Hypothesis 3) shape team performance outcomes under extreme conditions. While these core 

organizational features have been of primary interest to scholars (e.g., Schmookler, 1972; 

Stinchcombe, 1965; Zenger and Lazzarini, 2004), they have not been studied in relation to team 

composition (Joshi and Roh, 2009).  

R&D team diversity in experience and performance 

Building on prior work, we define team diversity as an arrangement in which a team disposes 

of different types of endowments (Jackson, Stone and Alvarez, 1992; Harrison and Klein, 2007) 

– in our case, different types of task-related experience. Team members’ task-related experience 

is a key dimension of diversity (Joshi and Roh, 2009) and has particular significance in 

innovation because exploratory activities are non-routine and thus rely more strongly on 

flexible inputs than would other types of work activities (Argote, 1999; Dixon, 1999).2 

In particular, prior research points out that diversity in experience (henceforth, 

experience diversity) generates fundamental benefits in innovative activities. This is so because 

                                                            
2 A large body of prior research views team members’ demographic backgrounds as determinants of their cognitive 
bases, that is, their assumptions about the future, cognitive and attitudinal perspectives, perception, knowledge of 
alternatives, and the consequences attached to alternatives (Dougherty, 1992; Hambrick and Mason, 1984). From 
an empirical standpoint, a person’s demographic background is frequently used as a proxy for cognitive factors 
that are typically hard to observe, especially when larger scale empirical evidence is sought. 
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diverse teams are able to draw on a wider set of knowledge, skills, perspectives, and network 

relationships, and thus cognitive and social resources that critically support the identification 

and evaluation of solutions. For instance, diverse teams are not only more likely to find the 

solution to a given problem within their existing experience set and more diverse networks 

(Dixon, 1999), but also benefit from greater recombinant opportunity in their creative search 

(Laamanen and Wallin, 2009) – an element that is of major importance in R&D activities, 

because innovation critically relies on the recombination of existing ideas and artifacts 

(Schumpeter, 1934; Nelson and Winter, 1982). Team experience diversity is also key to the 

evaluation of solutions because it allows teams to develop different perspectives on existing 

insights and pinpoint those solutions that ensure superior performance (Dixon, 1999). In 

particular, diverse teams are less likely to suffer from groupthink, and ultimately reject faulty 

presumptions.  

As the research on teams operating in extreme conditions suggests, the benefits 

associated with team experience diversity are likely to matter even more in hypercompetitive 

settings. This is because such environments demand greater levels of flexibility in the team’s 

response repertoire, novel interpretations of existing and newly acquired knowledge, and varied 

viewpoints to determine which solution is likely to generate the strongest performance (e.g., 

Bechky and Okhuysen, 2011). Hence, the aforementioned benefits will increase linearly with 

team’s experience diversity. 

Even though there are important benefits associated with team experience diversityit is 

also important to recognize that team functioning and knowledge recombination in diverse 

teams entail costs (Taylor and Greve, 2006). Indeed, experience diversity implies 

communication and coordination costs since team members are required to collaborate with 

dissimilar others (Dougherty, 1992; Williams and O’Reilly, 1998). For instance, diverse teams 

find it more difficult to communicate ideas amongst each other, as they possess different types 

of background knowledge and are likely to use different types of jargon to explain their insights. 
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Furthermore, research tells us that diverse teams may face higher communication and 

coordination costs because they lack intra-group trust due to low social integration and 

pronounced intra-group task conflict (Richard, Murthi and Ismail, 2007). While these costs are 

likely to be small for low levels of team experience diversity, they increase as experience 

diversity increases. This is because when one experience field is added to the range of fields y 

that a team of size x already covers, the number of experience field combinations rises to 

x*(y+1), thus increasing intra-group communication and coordination costs.  

As noted earlier, existing empirical research indicates that these costs do not have a first-

order effect on team performance in “average” settings. Indeed, the meta-analysis by Horwitz 

and Horwitz (2007) indicates a positive relationship between the task-related experience 

diversity of teams and their performance. In contrast to this result, we argue that the costs 

associated with team experience diversity do affect team performance in important ways, in 

hypercompetition. This is because diverse teams experience major difficulties in performing 

their tasks in the seamless and highly coordinated manner that is required to achieve timely 

advances in settings characterized by uncertainty and severe time pressures (Bechky and 

Okhuysen, 2011). Specifically, the uncertainty and time pressure teams face in 

hypercompetition significantly increase the stress experienced by team members and, thus, the 

likelihood and extent of intra-group task conflict and communication problems. For instance, 

when different viewpoints arise, which per se is more likely in diverse teams, these teams 

cannot discuss each viewpoint in depth and properly value each team member’s contribution, 

as they feel the strong pressure to come up with a quick solution. Team members whose ideas 

are rejected without any proper explanation may continue to insist on their solution, turn 

passive, or even undermine the efforts of the team by seeking to build team-internal coalitions 

and escalating the latent conflict. Hence, compared to less challenging settings, these teams are 

likely to experience not only more conflict but also more intense conflict. As a result, they are 

likely to face difficulties in reaching agreements, which is particularly deleterious when quick 



11 

decision making is vital to performance. In the worst case, they may not reach agreement at all 

and, as a consequence, they may either hold to an existing inferior solution or implement a 

novel solution that could be flawed. 

In sum, we posit that beyond a certain level of team experience diversity the costs of 

such a set-up offset the related benefits, making the relationship between team experience 

diversity and team performance an inverted U-shape. Hence, we propose: 

Hypothesis 1:  In hypercompetitive environments, there exists an inverted U-shaped 

relationship between the level of experience diversity in R&D teams and their 

performance. 

Boundary conditions: R&D teams and their organizational context 

Teams do not work in a vacuum but critically rely on their organizational context (Miner et al., 

2001; Baker and Nelson, 2005; Joshi and Roh, 2009; Bechky and Okhuysen, 2011). Building 

on the conclusions derived in the previous section, we investigate how two organizational-level 

boundary conditions shape the relationship between R&D teams’ experience diversity and their 

performance. These two conditions are the size and age of the firms with which these R&D 

teams are associated. Firm size and age have long been recognized as fundamental factors in 

prior work on organizational structure and innovation (e.g., Stinchcombe, 1965; Kimberly, 

1976; Haveman, 1992; Haveman, 1993; Zenger, 1994, Zenger and Lazzarini, 2004). Firms of 

varying size and age are characterized by substantially different material, cognitive, and social 

resources, including the firms’ knowledge endowments, routines, as well as search strategies 

(Cyert and March, 1963; Nelson and Winter, 1982). Thus, we expect both firm size and age to 

importantly affect the functioning of R&D teams operating under extreme conditions.  

Paraphrasing Haans et al. (2015), these firm characteristics affect the latent mechanisms 

driving the inverted U-shaped relationship between teams’ experience diversity and their 

performance by shifting the inflection point of the curve. To illustrate this point, suppose that 

the performance of an R&D team, Y, is a concave function of the level of R&D team experience 
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diversity, X: Y=α0X-α1X2. α0X are the benefits of R&D team experience diversity, while α1X2 

are the costs. We are interested in the moderating effect of firm size or age, Z, on the relationship 

between R&D teams’ experience diversity and their performance. To investigate this effect, we 

adopt a standard approach (Haans et al., 2015) and increase the linear benefits of R&D team 

experience diversity by α2XZ and the convex costs by α3X2Z. The inflection point of the inverted 

U-shaped curve occurs at X*=(α0+α2Z)/(2*(α1+α3Z)), where α0+α2Z is the marginal benefit of 

increasing R&D team experience diversity and α1+α3Z the effect of increasing R&D team 

experience diversity on the marginal costs. At this point it becomes clear that the inflection 

point of the U-shaped curve shifts to the right or to the left, depending on whether or not Z 

magnifies the benefits of R&D team experience diversity more than the marginal cost. 

Organizational size: Small versus large firms 

Existing literature has highlighted both the advantages and disadvantages associated with large 

firm size (Cyert and March, 1963; Damanpour, 1996; Haveman, 1993). Specifically, firm size 

is considered to affect innovation positively because large firms have more resources available 

than small firms, which allow their R&D teams to adapt more easily to changing circumstances, 

undertake a large number of R&D projects and experiment with risky R&D projects 

(Damanpour, 1996; Haveman, 1993). Additionally, R&D teams in large firms can draw on a 

broad knowledge base and a “well-equipped” toolbox to facilitate the timely re-combination of 

existing knowledge and experience (Cohen and Levinthal, 1990). Based on these arguments, 

we should expect firm size to magnify the benefits of R&D teams’ experience diversity. 

Firm size may also magnify the potential costs inherent to R&D team experience 

diversity. This is because large firms are characterized by high levels of structural complexity 

and bureaucracy (Blau, 1970), slow responsiveness to change (Haveman, 1993), as well as 

payment schemes that poorly reward employees’ effort (Zenger, 1994; Zenger and Lazzarini, 

2004). Furthermore, in large firms, communication within and across teams requires complex 

and costly paradigms, assumes impersonal and formal tones, and creates differentiation of 
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authority (Haveman, 1993). Altogether, these factors can hinder the innovation process and thus 

the performance of R&D teams (Aldrich and Auster, 1986; Camison-Zornoza et al., 2004).  

In hypercompetitive environments, we expect the magnification of the positive effects 

of R&D teams’ experience diversity caused by firm size to be first order with respect to cost 

amplification. In fact, in these environments, the greater availability of material, cognitive, and 

social resources is of fundamental importance for diverse R&D teams as they enhance and 

facilitate the ideation process, the rapid development of R&D projects, and provide these teams 

with key advantages when dealing with the high uncertainty characterizing their innovative 

projects. For instance, because of the richer and more stimulating setting offered by large firms, 

diverse teams are not only able to generate a greater number of solutions, as well as more varied 

solutions within a given project, but can also quickly execute a higher number of projects (cf. 

Bechky and Okhuysen, 2011), generate multiple real options and, thus, better leverage the risks 

associated with their innovation activities (Mohr, 1969; Ettlie and Rubenstein, 1987). 

Additionally, resource availability allows diverse R&D teams employed by large firms in 

hypercompetitive environments to react more quickly to shifts in environmental demands 

(Haveman, 1993).  

Based on these arguments, we propose: 

Hypothesis 2: In hypercompetitive environments, firm size moderates the inverted U-

shaped relationship between R&D teams’ experience diversity and their performance 

in such a way that the inflection point of the inverted U-shaped curve will occur earlier 

for teams working in small firms than for teams working in large firms. 

 

Organizational age: Young versus old firms 

Similar to firm size, firm age has a fundamental impact on the accomplishment of tasks within 

organizations (Freeman, Carroll and Hannan, 1983; Sorenson and Stuart, 2000) and has 

potentially both functional and dysfunctional effects on the organization of R&D teams. A 
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number of scholars have pointed out that, as firms become older, they accumulate valuable 

experience that allows them to efficiently pursue innovative projects, increase the reliability of 

their routines as well as external ties, and deepen their absorptive capacity (March, 1991; 

Sorenson and Stuart, 2000; Cohen and Levinthal, 1990). Moreover, as firms become older, they 

improve their capacity to evaluate competitors’ innovative activities, which ultimately 

strengthens their competitive advantage (Leiblein and Madsen, 2008). Nevertheless, firm age 

is also associated with greater structural inertia in organizations, local searches for solutions, 

and low adaptation to environmental changes (Freeman et al., 1983; Aldrich and Auster, 1986; 

Kelly and Amburgey, 1991). Furthermore, old firms are often resistant to competency-

destroying innovations (Tushman and Anderson, 1986; Tripsas, 1997).  

The arguments just discussed suggest that firm age could positively affect both the 

benefits and costs of R&D teams’ experience diversity. However, in hypercompetitive settings, 

the benefits should be more pronounced than the costs. Indeed, prior research tells us that 

organizations build up troves of supplies over time that can facilitate the creative actions of 

diverse teams, as they can quickly draw on these accumulated stocks of existing material, social, 

and cognitive resources when responding to dynamic changes in the competitive environment 

(Bigley and Roberts, 2001; Miner et al., 2001; Bechky and Okhuysen, 2011). However, we 

believe that the competitive pressures to which the organization finds itself subjected will 

mitigate any resistance to competency-destroying innovations that characterizes the R&D work 

of diverse teams in older firms. In fact, while older firms may, in general, find it relatively more 

beneficial to preserve the status quo rather than to experiment with major innovations (Methé, 

Swaminathan and Mitchell, 1996), they are likely to realize that they may have no other choice 

than to engage in frequent innovation in order to survive and prosper in hypercompetition. 
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Taken together, these arguments suggest that, holding firm size constant, firm age 

increases the benefits that can be derived from team experience diversity3. We thus posit that 

the inflection point of the inverted U-shaped curve representing R&D teams’ performance as a 

function of their experience diversity should shift to the right for old firms (Haans et al., 2015).  

Hypothesis 3: In hypercompetitive environments, firm age moderates the inverted U-

shaped relationship between R&D teams’ experience diversity and their performance 

in such a way that the inflection point of the inverted U-shaped curve will occur earlier 

for teams working in young firms than for teams working in old firms.  

METHODS 

Empirical setting: the F1 motorsport industry 

To test our hypotheses, we use data from F1 motorsport. F1 is one of the oldest race car series 

in existence and shares key features with the American IndyCar Series. The F1 series is 

governed by the Fédération Internationale de l’Automobile (FIA) and ranks among the most 

popular sports around the world, generating yearly revenues of 4.4 billion USD. Grand Prix 

races are held at different locations worldwide on purpose-built racetracks (circuits) as well as 

on public roads (Jenkins, 2004; Sylt and Reid, 2010). According to FIA regulations, car 

constructors must build their race cars’ chassis. This requirement distinguishes F1 from other 

race series, such as the American IndyCar Series, where constructors may buy the chassis of 

their race cars. Within F1, constructors like Ferrari, McLaren, or Williams have their R&D 

teams design, and manufacture highly specialized single-seater, open-wheel cars. Constructors 

are typically medium-sized companies located in Europe, mainly in the region around Oxford, 

in the United Kingdom. Each constructor is allowed to compete with two cars and manages 

considerable budgets of up to 415 million USD. The F1 motorsport industry is considered a 

highly innovative industry at the forefront of technological development in car manufacturing. 

                                                            
3 Referring to the simple mathematical example above, our statement implies that the coefficient α2 in X*= 
(α0+α2Z)/(α1+α3Z) is positive, where Z is firm age. 
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Advancements in technology, highly dynamic regulatory environments, and knowledge leakage 

require constructors’ R&D teams to innovate at a rapid pace to improve F1 cars’ performance.  

The R&D division of an F1 constructor consists of fifteen to eighteen engineers and is 

typically headed by three lead engineers: the Technical Director, the Chief Designer, and the 

Chief Aerodynamicist4. In line with prior research (e.g., work on upper echelons (cf. Hambrick 

and Mason, 1984) and dominant coalitions (cf. Cyert and March, 1963)), our analysis focuses 

on the top-level R&D team (henceforth: R&D team) that is composed of these three lead 

engineers, as they are responsible for making the key decisions in race car construction. In fact, 

race car performance is highly dependent on the efforts of these R&D teams (Grand Prix, 1992, 

1997), as they organize the R&D work and have to ensure that different components of a race 

car fit together in a highly precise manner.  Within an R&D team, each of the three lead 

engineers specializes in different task sets. The Technical Director is the head of the R&D 

division and oversees the development and deployment of race cars. He is responsible for the 

overall functioning of the race cars and must ensure that the resulting products fit the drivers’ 

characteristics. The Chief Designer is responsible for the basic design of the race cars, chooses 

the materials, and plays a fundamental role in transforming components with potentially 

conflicting requirements into a unique and competitive final product. The Chief 

Aerodynamicist heads the aerodynamics division. Aerodynamics must create the downforce 

that keeps the race cars on the track and permits greater cornering speeds. The Chief 

Aerodynamicist not only manages this process but he must also minimize the air drag that is 

responsible for reducing the cars’ speed. Each F1 R&D team is headed by a Team Principal. 

He is the constructor’s CEO and is responsible for every management decision, including 

contracting sponsors and suppliers, recruiting drivers and engineers, as well as determining 

                                                            
4 In case of works teams (i.e., constructors that build their cars’ engines in addition to the chassis), the R&D team 
also includes a Chief Engine Designer. As the focus of our analysis is on the construction of a car’s chassis and 
not on engine construction, we do not consider Chief Engine Designers. However, to differentiate works teams 
from the remainder, we control for works teams in our regressions. 
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wages. Although the Team Principal is not responsible for the cars’ construction, he has the 

final say in all strategic decisions. We thus control for his background, as discussed below.5 

Sample and data collection 

Our analysis is based on unique, fine-grained data on F1 R&D teams, including their 

performance and a large number of additional key characteristics. Because this data is not 

available from a single source, we engaged in a comprehensive data collection effort that 

combined several electronic and paper-based sources. Specifically, we extracted information 

about R&D teams’ composition and their race cars from the www.motorsportarchiv.de website. 

Moreover, we gathered Team Principals’ biographical information from the F1 yearbooks and 

extensive internet searches.6 Additionally, we collected data on qualifying classifications from 

the electronic database available at www.motorsport-total.com. We supplemented these data 

with information retrieved from the lead engineers’ biographies, gathered once again through 

extensive internet searches. Finally, we extracted information on constructors’ budgets from 

the F1 yearbooks, for the years 1993 to 2006, and from the F1 financial reports, for the years 

2007 and 2008 (Sylt and Reid, 2008, 2009).  

Our data set is constructed at the level of an F1 R&D team. Overall, the data set includes 

88 R&D teams that operated from 1993 to 2008. During this period, these teams built a total of 

141 race cars, with an average of 1.8 cars per team. For these cars, we observe 2,375 qualifying 

outcomes in F1 World Championship races. The R&D teams were employed by 13 F1 

constructors and managed by 32 Team Principals. The average team tenure is 1.8 years, with a 

minimum of 1 year and a maximum of 7 years. 

                                                            
5 In a few cases, the R&D team is made up of only two lead engineers. These cases are mainly confined to the 
early years, when the Chief Aerodynamicist was not always included in an R&D team. Since the 1980s, these 
teams have systematically studied the aerodynamic properties, that is, after Colin Chapman had invented the 
ground effect. This invention subsequently led to the creation of the role of the Chief Aerodynamicist, which then, 
progressively, became part of an R&D team. There are also cases in which a team is made up of four lead engineers. 
This team set-up is typically observed either when a constructor wants to ensure a smooth transition from one 
Chief Designer to another, or when the CEO believes that the tasks of a Chief Designer are more efficiently 
performed by two employees. The latter case is more frequent for large constructors. 
6 For this purpose, we consulted a number of websites, such as LinkedIn and Wikipedia. 
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Measures 

Dependent variable: R&D team performance 

The speed of an F1 race car is key to race performance, which strongly depends on the R&D 

teams’ work. For this reason, we operationalize R&D teams’ performance using the percentage 

deviation of their cars’ qualifying time from that of the fastest car during the qualifying session. 

Qualifying sessions take place on the day preceding a Grand Prix race. During these sessions, 

each driver has a number of trials to determine the grid position of his car during the race the 

following day. Because there are significant advantages in starting a race at the head of the grid, 

F1 drivers compete fiercely for this pole position. To facilitate the interpretation of the 

dependent variable, we multiply the ratio in (1) by the negative of 1. In this way, higher values 

of the dependent variable indicate better R&D team performance. Our dependent variable of 

interest, R&D team performance, is thus defined as:  

௜௝݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌	݉ܽ݁ݐ	ܦ&ܴ ൌ െሺ
௣௢௟௘ݍ௜௝ିݍ ௝
௣௢௟௘ݍ ௝

ሻ (1) 

 

where qpole j refers to the qualifying time of the fastest car at qualifying session j and ݍ௜௝ to driver 

i’s qualifying time. As argued by Bothner, Kim, and Smith (2012), a car’s qualifying time 

during the pre-race knockout session provides a better indication of R&D team performance 

than the time scored during an actual race, for two main reasons. First, during the qualifying 

sessions, competing cars are not allowed to block each other. Thus, their resulting score depends 

more on each car’s technical performance, which ultimately relies on the R&D team, than on 

the driver’s strategies. Second, contrary to race outcomes, qualifying results are not affected by 

accidents and other factors, such as refueling or changing tires, which are not directly related 

to the performance of R&D teams. As mentioned earlier, each constructor is allowed to enter 

two cars in a Grand Prix race. Because each car’s qualifying outcome can be affected by the 

driver’s errors, which are independent of an R&D team’s accomplishment, we only consider 

the qualifying result of the faster of the two race cars. 



19 

Independent variable of interest: Experience diversity of R&D teams 

Through extensive examination of the R&D team members’ curricula and relevant F1 literature, 

we identified five major areas in which R&D teams have gathered task-related experience: i) 

industries other than motorsports, ii) Championship Auto Racing Teams (CART) sport, iii) 

Formulas other than F1 (e.g., Formula 2, GP2 Series, Formula 3000), iv) F1 constructors other 

than the current one, and v) race car building for non-commercial events.  

Experience gathered in industries other than motorsports is instrumental to R&D team 

engineers in creating networks of suppliers and other partners. To cite an example, prior to 

joining F1, Rory Byrne, a star engineer at Benetton and Ferrari, worked as chief chemist at a 

polymer manufacturing plant. He then set up a company importing performance car parts. He 

cites these two work experiences as being instrumental for his later F1 position (Grandprix, 

1996). 

Experience in CART sport, which is a stepping stone to the higher and more expensive 

motorsport series, enables the engineers to understand their cars’ fundamental physical 

principles. This is because CART sports cars are made of materials that are heavy and inflexible 

and, thus, difficult to handle. Experience in CART sport also makes engineers aware of the 

various F1-relevant parameters, like tire pressure, gearing, seat position, and chassis stiffness.  

Experience in other Formulas allows engineers to improve the speed and reliability of 

their race cars and deal with the standardization of their cars’ chassis.  

Experience with different F1 constructors allows engineers to draw on their prior 

employers’ knowledge when constructing new race cars. For example, Niccolo Petrucci, Chief 

Aerodynamicist at Toro Rosso, mentioned that in determining the aerodynamic properties of 

the “Toro Rosso STR 6” car, he drew from experience gained at Ferrari F1 in 1992 (F1 

Technical, 2011).  

Finally, car construction for non-commercial events helps an engineer to understand 

how to combine different car components and deal with budget constraints. Adrian Newey, an 
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F1 star designer, points out that his experience in race car construction for non-commercial 

events was key to learning how to improve a car’s speed (Grandprix, 2013). 

Based on the five aforementioned areas, we constructed our focal Team experience 

diversity measure as a Herfindahl Index (HI), defined as the sum, across experience fields 

z=1,…,N, of the square of the share (ݏ௭) of R&D team members who have experience in a given 

field z. Hence: 

HI ൌ 	෍ݏ௭ଶ
ே

௭ୀଵ

 
(2) 

Moderators 

Constructor size. We follow prior literature (see, for instance, Graves and Langowitz, 1993) 

and proxy this measure by the annual budget (in constant USD) that is available to constructors 

for paying for drivers, engineers and support staff, chassis, tires, fuel, transportation, logistics, 

as well as public relations. For the sake of comparison, we exclude engine expenditures from 

the constructor budget. 

Constructor age. This measure captures the age of the constructor, which is defined as 

the number of years elapsed from foundation. 

Control variables 

Given the richness of our data set, we are able to control for a large number of team and 

organizational level characteristics that are likely to influence R&D team performance. 

Team size. Team size is typically used as a proxy for the human capital available to a 

team, which, in our context, is likely to be a source of positive correlation between team 

experience diversity and performance (Bantel and Jackson, 1989; Wiersema and Bantel, 1992). 

Since team size in our empirical context can only take values of two, three, and four, we control 

for R&D team size by using three dummy variables flagging teams of two, three, and four 

members. 
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Team tenure. The longer team members have worked together, the lower their 

communication and coordination costs (Dixon, 1999; Bechky and Okhuysen, 2011). 

Additionally, as Bermann, Down and Hill (2002: 16) pointed out, high turnover in teams may 

“disrupt the ability of members to draw upon experientially constructed schemata in order to 

operate in a synchronous fashion”. Following prior work (Taylor and Greve, 2006), we control 

for team tenure and we operationalize it as the count of F1 seasons during which the 

composition of a given team remained unchanged. 

Team experience in F1. Since innovative output critically depends on the accumulation 

of prior experience (Ingram and Baum, 1997), we control for an R&D team’s experience in F1. 

The measure is defined as the sum of the number of years each team member has worked in F1. 

We also include a squared term given that the impact of team experience on performance is 

likely to be characterized by diminishing returns (Finkelstein and Hambrick, 1996). 

Team average age. This measure captures the average age of the team members, which 

is a proxy for their overall (not only F1) experience (Heckman and Robb, 1985). 

Former productivity of the team members (non-F1). We use the share of team members 

who won a championship title in a race series other than F1 to control for team members’ 

quality. The latter is likely to be a source of correlation between a team’s performance and its 

diversity (Rigney, 2010). 

Work experience Team Principal. We control for a Team Principal’s experience given 

that he is responsible for all management decisions. We use three dummies, indicating whether 

the Team Principal had accumulated prior work experience as race engineer, race driver, or 

manager.  

Change in drivers. The innovations implemented in a race car must be tailored to the 

characteristics of each driver. Becoming acquainted with driver characteristics entails a cost to 

the R&D team, which is lower if the drivers do not change from one season to another. We thus 
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employ three dummy variables indicating whether an F1 constructor had kept both drivers, only 

one driver, or neither of the drivers, relative to the previous season. 

Constructor type. We include a dummy that takes the value of 1 if a constructor builds 

both the cars’ chassis and the engines (e.g., Ferrari) and a value of zero if it builds only the 

chassis (e.g., Williams). R&D teams working for the former have more freedom in constructing 

their race car (F1 Technical, 2005), which ultimately affects the cars’ performance. 

Constructor past success. To control for a constructor’s quality, we include a dummy 

variable that controls for the constructor’s past success. This dummy takes the value of 1 if the 

constructor was awarded the title of “Constructor World Champion” in any of the prior five 

years, and zero otherwise. 

Driver past success. To control for a driver’s quality, we use a dummy variable that 

takes the value of 1 if a driver won at least one F1 Driver World Championship, and zero 

otherwise. 

Racetrack. Track characteristics are likely to affect qualifying outcomes. Indeed, there 

are some cars that are better equipped for city tracks, like Monaco, and others that perform 

better on purpose-built racetracks, like Silverstone. Typically, cars with higher top speed or cars 

with good aerodynamic properties perform better on purpose-built racetracks. A dummy 

variable thus controls for racetrack characteristics and takes the value of 1 for city tracks and 

zero for purpose-built tracks.  

Weather. Race cars and their drivers cope differently with weather conditions. We thus 

include a dummy to control for weather conditions (1= rain, zero= other conditions).  

Race of the season. To control for the race of a season, we employ a count variable that 

takes the value of 1 if a car is competing in the qualifying of a season’s first race, 2 in the second 

qualifying, and so forth until the last season’s qualifying. This measure controls for economies 

of learning that R&D teams gain over a season.  



23 

Season fixed effects. We include season fixed effects to control for season-specific 

factors that may affect qualifying outcomes. 

Econometric methodology 

We estimate the relationship between R&D teams’ experience diversity and their performance 

with the following equation: 

௜௝݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌	݉ܽ݁ݐ	ܦ&ܴ ൌ ଴ߛ ൅ ଵܶ݁ܽ݉ߛ ݁ܿ݊݁݅ݎ݁݌ݔ݁ ௜௝ݕݐ݅ݏݎ݁ݒ݅݀ ൅ 

൅ߛଶܶ݁ܽ݉	݁݁ܿ݊݁݅ݎ݁݌ݔ	ݕݐ݅ݏݎ݁ݒ݅݀௜௝
ଶ ൅ ௜௝ݔ

ᇱ ߚ ൅  ௜௝ߝ

(3)

where the subscript i refers to a constructor’s R&D team and the subscript j refers to a qualifying 

session. To test Hypothesis 1 regarding the inverse U-shaped relationship between a team’s 

experience diversity and the resulting performance, we add the squared term of Team 

experience diversity. The vector ݔ௜௝ contains the regressors described in the moderators and 

control variables section.  

Verifying that the coefficient of Team experience diversity is positive and the squared 

term is negative, and that they are jointly significant, is necessary but not sufficient to test 

Hypothesis 1 (Aiken and West, 1991; Cardinal, Miller, and Palich, 2011). We must also verify 

that the slope of the curve describing the relationship between a team’s experience diversity 

and its performance is “sufficiently steep at both ends of the data range” and has the expected 

sign in each range (Haans et al., 2015: p. 6). Say ܶ݁ܽ݉	݁݁ܿ݊݁݅ݎ݁݌ݔ	ݕݐ݅ݏݎ݁ݒ݅݀௅ is the low and 

 ு is the high end of the data range, the slope of the curve atݕݐ݅ݏݎ݁ݒ݅݀	݁ܿ݊݁݅ݎ݁݌ݔ݁	݉ܽ݁ܶ

ଵߛ .௅, i.eݕݐ݅ݏݎ݁ݒ݅݀	݁ܿ݊݁݅ݎ݁݌ݔ݁	݉ܽ݁ܶ ൅ ଶߛ2 ∗  ௅, must beݕݐ݅ݏݎ݁ݒ݅݀	݁ܿ݊݁݅ݎ݁݌ݔ݁	݉ܽ݁ܶ

positive and significant, whereas the slope at ܶ݁ܽ݉	݁݁ܿ݊݁݅ݎ݁݌ݔ	ݕݐ݅ݏݎ݁ݒ݅݀ு, i.e., ߛଵ ൅

ଶߛ2 ∗  .ு, must be negative and significant (Haans et al., 2015)ݕݐ݅ݏݎ݁ݒ݅݀	݁ܿ݊݁݅ݎ݁݌ݔ݁	݉ܽ݁ܶ

We discuss these tests in the results section.  

Despite the fact that our data are rich in observed characteristics, we cannot completely 

rule out that there may be omitted factors that affect both an R&D team’s experience diversity 
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and its performance. Moreover, it is also possible that the estimates from equation (3) are biased 

by reverse causality (Hamilton and Nickerson, 2003). In fact, while we should expect that R&D 

team experience diversity affects a team’s performance, it is also plausible that expected 

performance induces a constructor to decide on a given team composition. To address these 

concerns, we re-estimate equation (3) limiting the sample to races that occurred during the 

following years: 1994, 1998, 2001, 2004, 2005, 2006, and 2008. These years are characterized 

by profound changes in the rules governing F1 races.7 Because these changes are unpredictable, 

we can assume that our focal independent variable, Team experience diversity, is uncorrelated 

with the error term in the aforementioned years.  

As a robustness test, we estimate an instrumental variable (IV) model in which we 

instrument Team experience diversity and its squared term with plausibly exogenous regressors. 

We use as instruments the share of an R&D team’s lead engineers for whom English is their 

mother tongue, the share of lead engineers for whom French is their mother tongue, and the 

share of lead engineers for whom Italian is their mother tongue. Discussions with experts 

revealed that lead engineers who work for British, French, and Italian F1 R&D teams have 

distinctive characteristics, which leads us to consider them as belonging to a British, French, or 

Italian “School”. Conditional on our rich set of controls, these instruments should affect R&D 

teams’ performance only through our Team experience diversity. We label the instruments as 

Share EN, Share FR, and Share IT. We include the squared terms of these shares to take into 

account non-linearities in the relationship between these shares and Team experience diversity. 

As a last instrument, we use the industry average of Team experience diversity. Having 

controlled for constructor and season characteristics, the identifying assumption, here, is that 

                                                            
7 Specifically, in 1994 driver aids were banned. In 1998, a car’s standard width was reduced and grooved tires 
became mandatory. In 2001, traction control was allowed. In 2004, the FIA established the minimum size of rear 
wing end plates. In 2005, the diffusion size was reduced and drivers were not allowed to change tires during a 
race. In 2006, tire changes were reintroduced. In 2008, traction control was banned.  
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the industry averages pick up the effects of industry-specific attributes that are uncorrelated 

with omitted R&D team-specific factors. 

To test Hypothesis 2 regarding the moderating effect of firm size, we modify the 

equation specification in (3) and introduce interaction terms between the size of a constructor 

and both the linear and the squared term of Team experience diversity:  

௜௝݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌	݉ܽ݁ݐ	ܦ&ܴ ൌ ଴ߛ ൅ ଵܶ݁ܽ݉ߛ ݁ܿ݊݁݅ݎ݁݌ݔ݁  ௜௝ݕݐ݅ݏݎ݁ݒ݅݀

																																൅ߛଶܶ݁ܽ݉	݁݁ܿ݊݁݅ݎ݁݌ݔ	ݕݐ݅ݏݎ݁ݒ݅݀௜௝
ଶ ൅ ଷܶ݁ܽ݉ߛ ݁ܿ݊݁݅ݎ݁݌ݔ݁ ௜௝ݕݐ݅ݏݎ݁ݒ݅݀

∗ ݁ݖ݅ݏ	ݎ݋ݐܿݑݎݐݏ݊݋ܥ ൅ ௜௝ݕݐ݅ݏݎ݁ݒ݅݀	݁ܿ݊݁݅ݎ݁݌ݔ݁	ସܶ݁ܽ݉ߛ
ଶ ∗ ݁ݖ݅ݏ	ݎ݋ݐܿݑݎݐݏ݊݋ܥ

൅	ߛହݎ݋ݐܿݑݎݐݏ݊݋ܥ	݁ݖ݅ݏ	 ൅ ௜௝ݖ
ᇱ ߚ ൅  ௜௝ߝ

(4)

where the vector ݖ௜௝ contains the regressors described in the control variables section with the 

exception of a constructor’s size.  

In case we find support for Hypothesis 1, Hypothesis 2 predicts that firm size moderates 

the inverted U-shaped relationship between R&D teams’ experience diversity and their 

performance in such a way that the inflection point of the inverted U-shaped curve will occur 

later (earlier) for teams employed by large (small) firms. By introducing the interaction terms 

between the size of a constructor and both the linear and the squared terms of Team experience 

diversity, the optimal value of Team experience diversity, at which the inflection point occurs, 

becomes:  

∗ݕݐ݅ݏݎ݁ݒ݅݀	݁ܿ݊݁݅ݎ݁݌ݔ݁	݉ܽ݁ܶ 	ൌ 	
െߛଵ െ ଷߛ ∗ ݎ݋ݐܿݑݎݐݏ݊݋ܥ ݁ݖ݅ݏ
ଶߛ2 ൅ ସߛ2 ∗ ݎ݋ݐܿݑݎݐݏ݊݋ܥ ݁ݖ݅ݏ

 
(5)

A formal test of Hypothesis 2 thus requires that the derivative of Team experience diversity* 

with respect to constructor size be positive:  

∗ݕݐ݅ݏݎ݁ݒ݅݀	݁ܿ݊݁݅ݎ݁݌ݔ݁	݉ܽ݁ܶ	ߜ

݁ݖ݅ݏ	ݎ݋ݐܿݑݎݐݏ݊݋ܥ	ߜ
	ൌ 	

ସߛଵߛ െ ଷߛଶߛ
2ሺߛଶ ൅ ସߛ ∗ ݎ݋ݐܿݑݎݐݏ݊݋ܥ ሻଶ݁ݖ݅ݏ

 
(6)

Since the denominator of equation (6) is strictly greater than zero, Hypothesis 2 is supported if 

the numerator of equation (6) is greater than zero. 
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We test Hypothesis 3 regarding the moderating effect of firm age in a similar way as we 

do for Hypothesis 2. Specifically, we introduce in equation (3) interaction terms between the 

age of a constructor and both the linear and the squared term of Team experience diversity. 

Hypothesis 3 predicts that firm age moderates the inverted U-shaped relationship between R&D 

teams’ experience diversity and their performance in such a way that the inflection point of the 

inverted U-shaped curve will occur later (earlier) for teams working in old (young) firms. To 

test this hypothesis, we introduce the interaction terms between the age of a constructor and 

both the linear and the squared terms of Team experience diversity. We then test whether the 

derivative of Team experience diversity* with respect to firm age is positive. 

RESULTS 

Descriptive results 

Tables 1 and 2 report summary statistics and correlations between the dependent and the 

explanatory variables used in the multivariate analysis. Table 2 indicates that correlations are 

relatively low, suggesting that multicollinearity is not a major concern. This intuition is 

formally confirmed by the estimation of variance inflation factors, which range between 1.02 

and 3.41 and are thus below the critical value of 10. 

Table 1 reports that 16 percent of the R&D teams are constituted of four lead engineers, 

62 percent are made of three lead engineers, and the remaining 22 percent consist of two lead 

engineers. On average, an R&D team has accumulated 40 years of experience in F1, with a 

minimum of eight and a maximum of 68 years. The average size of a constructor, proxied by 

its budget, is 77 million of constant USD. The average constructor age, as of 2008, is 24 years. 

--------------------------------------------------------- 

Please insert Tables 1 and 2 about here 
--------------------------------------------------------- 

Figure 1 shows the distribution of the R&D team performance variable. The median 

value of this variable is -2.2, and the minimum and maximum values are -32 and 0, respectively, 
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indicating that the distribution is skewed to the right.8 This is not surprising; in fact, small 

improvements in the R&D teams’ performance, measured by the percentage deviation of their 

cars’ qualifying time from that of the fastest car during the qualifying session, make a large 

difference in terms of their cars’ starting position in the Grand Prix race. For instance, at the 

1997 French Grand Prix, the Benetton Renault B197, driven by Alexander Wurz, would have 

started from the pole position rather than starting from position 7, had it scored 0.5 percentage 

points higher in the qualifying session. Figure 2 illustrates the distribution of the Team 

experience diversity index. The variable’s mean is 0.76, with a minimum value of 0.35 and a 

maximum value of 0.98. The distribution of Team experience diversity is skewed to the left, 

indicating that R&D teams in our study context tend to have high levels of experience diversity. 

--------------------------------------------------------- 

Please insert Figures 1 and 2 about here 
--------------------------------------------------------- 

Multivariate analysis 

Table 3 presents the regressions results for the performance of a constructor’s fastest car as a 

function of the level of its R&D team experience diversity and controls. We follow Angrist and 

Pischke (2008) and bootstrap standard errors. We do not cluster standard errors at the level of 

the constructors since we do not have enough clusters (Angrist and Pischke, 2008).  

Model 1 only includes moderators and controls. Model 2 contains the team experience 

diversity variables as well as moderators and controls. Model 3 restricts the sample to races that 

had taken place in years characterized by profound regulation changes, as explained in the 

methods section. Finally, Model 4 estimates the IV regression model. 

--------------------------------------------------------- 

Please insert Table 3 about here 
---------------------------------------------------------- 

                                                            
8 To ensure that our results are not driven by outliers we run a number of robustness tests in which we excluded 
from the sample those observations whose absolute performance deviation from the pole time exceeded 10%. After 
applying this criterion, the results remain unchanged.  
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Examining the controls in Model 1, we find that, as expected, the size of an R&D team 

is positively correlated with its performance. Additionally, we observe a significant relationship 

between a team’s level of F1 experience and its performance. In line with findings in the 

existing literature, team members’, drivers’, and constructors’ past performance are all 

significantly and positively correlated with an R&D team’s current performance. A similar 

positive correlation is found when we examine a constructor’s size, which we proxy by its 

budget, suggesting that the availability of resources is key for an R&D team’s performance 

(Herold et al., 2006). R&D teams that work with the same drivers from one season to another 

perform better than those whose drivers change from one season to the next. Also, R&D team 

performance during the last races of a season is stronger than performance during the earlier 

races. These last two results indicate that economies of learning are important predictors of 

R&D team performance. 

Hypothesis 1 predicts an inverted U-shaped relationship between the level of an R&D 

team’s experience diversity and its performance. We test this hypothesis in Model 2, which 

adds to Model 1 the interest variables Team experience diversity and its squared term. 

Consistent with Hypothesis 1we find that the coefficients of Team experience diversity and its 

squared term are both statistically significant and have the expected signs. An F-test on the joint 

significance of the coefficients of the linear and squared terms of Team experience diversity 

rejects the null hypothesis that these coefficients are jointly equal to zero with a p-value of 0.00. 

Given the magnitude of the coefficients, the inflection point is found at a value of Team 

experience diversity equal to 0.64, and thus lies within the range of our focal variable.  

As a robustness test, Model 3 shows the results of a regression model in which we 

restrict the sample to races that had taken place in years characterized by profound regulation 

changes. The sample size decreases from 2,375 to 1,022 observations. The coefficients of the 

linear and squared terms of Team experience diversity remain significant and have the expected 

sign. The magnitude of the coefficients increases relative to Model 2, but the inflection point is 
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reached for a value of Team Experience Diversity (0.70) that is very similar to the value derived 

by estimating Model 2 (0.64).  

Model 4 presents the results of the IV regressions, having instrumented Team experience 

diversity and its squared term using the following instruments: i) the share of R&D team lead 

engineers for whom English is their mother tongue, ii) the share of lead engineers for whom 

French is their mother tongue, iii) the share of lead engineers for whom Italian is their mother 

tongue, iv) the squared terms of the aforementioned instruments, and v) the industry average of 

Team experience diversity. Columns (a) and (b) of Model 4 present the first-stage results for 

Team experience diversity and its squared term, while column (c) presents the IV estimates. As 

shown, the instrument coefficients are highly significant.9 Regarding the IV estimates, we find 

that Team experience diversity and its squared term continue to be statistically significant. The 

magnitude of the coefficients increases relative to Model 2 and this is consistent with the results 

obtained by restricting the sample to seasons with regulation changes (Model 3). The resulting 

inflection point occurs for a value of Team experience diversity equal to 0.63, which is very 

similar to the values we derived from the previous models. 

As discussed, a formal test of Hypothesis 1 regarding the inverted U-shaped relationship 

between a team’s experience diversity and its performance requires the coefficient of team 

experience diversity to be positive and significant at the low end of the data range, i.e., the range 

of data up to the optimal value of team experience diversity. Additionally, the coefficient must 

be negative and significant at the high end of the data range, i.e., the range of data beyond the 

optimal value of team experience diversity. In practice, we split the sample at the optimal value 

of team experience diversity. Regression results for each subsample are presented in Table 4. 

As shown, the coefficients of Team experience diversity are highly significant and exhibit the 

expected sign in each subsample. Overall, these results provide support for Hypothesis 1. 

                                                            
9 We reject the null hypothesis that the instruments are weak using the Anderson-Rubin Wald test. The 
corresponding F-statistic is 15.85 (Anderson and Rubin 1949; Baum, Schaffer, and Stillman, 2007). 
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--------------------------------------------------------- 

Please insert Table 4 about here 
---------------------------------------------------------- 

Extending this key finding, our next set of hypotheses examines whether the 

organizational context affects the extent to which R&D teams’ performance can benefit from 

their experience diversity. To test Hypothesis 2 regarding the moderating effect of firm size, 

we flag large constructors by creating two alternative dummies. The first dummy takes the value 

of 1 for those constructors that are above the median of the constructor size distribution, and 

zero otherwise. The second dummy, which we use as a robustness test, takes the value of 1 for 

those constructors that are in the last quartile of the size distribution, and zero otherwise. As 

discussed, we then interact each dummy with Team experience diversity and its squared term 

and test whether the numerator of equation (6),ߛଵߛସ െ  .ଷ, is significantly greater than zeroߛଶߛ

The results are presented in Table 5. As shown in Models 5 and 6, we find that ߛଵߛସ is 

significantly greater than	ߛଶߛଷ, regardless of the size dummy we employ. Taken together, these 

results provide support for Hypothesis 2.10 

Finally, to test Hypothesis 3, we repeat the same procedure as in the case of constructor 

size. The related results are reported in Models 7 and 8 of Table 5. This time, we can only reject 

the null hypothesis that ߛଵߛସ െ  ଷ is equal to zero when we use as a cutoff for firm age itsߛଶߛ

median value. We do not reject the null hypothesis that ߛଵߛସ െ  ଷ is equal to zero when weߛଶߛ

use as a cutoff the 75th percentile of firm age.  Hence, support for Hypothesis 3 is not as strong 

as support of Hypothesis 2. A reason for this result might be that for very old firms the positive 

                                                            
10 Ideally, we would have performed the same tests by estimating an IV regression model or by limiting the sample 
to races that had taken place in years characterized by profound regulation changes. We refrain from performing 
these robustness checks for the following reasons. In the case of the IV regression model, we do not have 
sufficiently strong instruments for the interaction terms between each of the size dummies, on the one hand, and 
Team Experience Diversity and its squared term, on the other hand. In the case of the sample limited to years 
characterized by profound regulation changes, we unfortunately do not have sufficient variability in constructor 
size to be able to perform our tests. 
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effect of firm age on the benefits generated by R&D team diversity is offset by the negative 

effect that age might have in terms of increasing resistance to innovation.  

--------------------------------------------------------- 

Please insert Table 5 about here 
---------------------------------------------------------- 

DISCUSSION 

By drawing on research that has investigated teams operating in extreme settings as well as 

prior work on innovation, this paper has examined how an R&D team’s composition affects its 

performance outcomes in hypercompetition, and how variation in two primary organizational 

features – the size and the age of an organization – contextualizes this important relationship. 

Our analysis of a unique, longitudinal data set capturing 88 R&D teams in Formula 1 (1993-

2008) produced two main findings:   First, we found an inverse U-shaped relationship between 

the diversity in experience of R&D teams and team performance in hypercompetitive settings.   

Second, our results indicate that more diverse R&D teams operating in large organizations can 

draw greater benefits from their experience diversity than R&D teams working in small 

organizations, as the inflection point of the inverted U-shaped curve occurred later for teams in 

large firms than for those in smaller firms. The moderation effect of firm age while consistent 

with our hypotheses is not as robust as the effect of firm size. Taken together, these findings 

offer a number of novel theoretical implications for the strategy literature, and for related work 

on innovation and teams. 

Theoretical Implications 

Most generally, the present research contributes to the rapidly growing body of literature 

examining the antecedents to superior performance outcomes in hypercompetition (D’Aveni et 

al., 2010; McGrath, 2013). Notably, our study is the first in this literature to focus on the locus 

of the firm’s inventive activity – the R&D team – and to develop and test new theory on how 

the composition of an R&D team affects its performance in hypercompetition. Importantly, our 

results show an inverted U-shaped relationship between the level of a team’s task-related 
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experience diversity and its performance in this extreme setting. This relationship stands in 

stark contrast to the leading contemporary opinion in the literature on teams, suggesting a 

positive relationship between team diversity in task-related experience and performance (i.e., 

“greater diversity is better”) (cf. Horwitz and Horwitz, 2007). In other words, this means that 

extreme caution is necessary when applying the insights of well-established theories developed 

in the context of stable environments to hypercompetitive settings (D’Aveni et al., 2010; 

McGrath, 2013). Furthermore, this finding calls for a significant research agenda, as the 

boundary conditions of existing theories need to be investigated, and the development of new 

theories on the drivers of team performance in extreme settings will have to be pursued. 

Along these lines our results also provide intriguing insights on how teams operating in 

extreme settings should best be composed in order to master the manifold challenges posed by 

these settings. Whereas studies on teams in extreme conditions have produced a number of 

interesting insights (Weick, 1993; Klein et al., 2006; Weick and Sutcliffe, 2007; Bechky and 

Okhuysen, 2011), our empirical investigation of R&D teams is able to add to this body of 

research by (i) shedding new light on how team composition affects its performance in extreme 

settings, and by (ii) explicitly considering how different organizational contexts affect 

teamwork in extreme settings. In particular, the latter results not only support Bechky and 

Okyhuysen’s (2011) finding that the material, cognitive, and social resources offered by an 

organization enable (or constrain) teams in extreme settings, but reveal how the team’s 

composition and the organizational context jointly shape outcomes in these settings.  

The findings of this study also provide novel contributions for innovation research as 

well as the literature on teams.  First, innovation analysts have observed that teams play an 

increasingly important role in the production of knowledge (Wuchty, Jones and Uzzi, 2007). 

We add new insights to this body of work by providing empirical evidence indicating how R&D 

teams can produce successful outcomes in highly competitive settings, i.e., settings that place 

particularly strong demands on teams’ ability to innovate. Finally, our results provide new 
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insights for the team literature. Because teams are not simply the sum of their parts but engage 

in collective problem-solving activities (Dixon, 1999), scholars have been intrigued by the 

question regarding how team composition affects outcomes in larger organizations (Finkelstein 

et al., 2009). We add to this body of knowledge in two ways – by showing that well-established 

relationships do not hold true for hypercompetitive settings, and by providing evidence of 

important contextual factors shaping the team diversity–performance relationship. In this 

regard, Joshi and Roh (2009) have called for more research examining organizational context 

variables in studies on team diversity. 

Managerial Implications 

By bringing people and organizational characteristics into research on hypercompetition, our 

study is able to offer actionable managerial implications. In particular, our findings indicate that 

the benefits and costs associated with team diversity depend in important ways on the 

organization’s size. For instance, a CEO called to restructure a firm operating in a 

hypercompetitive environment will have to consider whether the firm they work for is small or 

large when setting the optimal level of R&D team experience diversity. 

Limitations 

When interpreting the results of this study, several limitations must be kept in mind. While our 

empirical setting offers several advantages for studying the relationship between R&D team 

composition and performance in hypercompetition, the question arises as to whether our results 

can be generalized to other settings. Despite this limitation, we note that the conditions 

encountered by R&D teams in the F1 motorsport industry are similar to those in other 

hypercompetitive industries, where the performance of teams largely depends on the ability to 

introduce innovative products within a short time span (McGrath, 2013). Examples of these 

industries include software, information, and communications, and less R&D-intensive 

industries, such as entertainment and fashion. Another limitation is that our setting is 

characterized by a small number of industry incumbents and is heavily regulated. While these 
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features allowed us to collect detailed data on the entire F1 industry and utilize regulation 

shocks to identify the impact of team experience diversity on performance (Lengnick-Hall and 

Wolff, 1999), future research should extend our findings to hypercompetitive settings 

characterized by a greater number of firms and fewer regulations. Finally, although we were 

able to collect unusually fine-grained information for our sample teams, we must acknowledge 

certain limitations inherent in our data collection effort. Like many studies examining teams in 

organizations, we use demographic data (experience backgrounds) as a proxy for cognitive 

factors that are hard to observe in reality, especially when larger scale empirical evidence is 

sought (Dougherty, 1992; Hambrick and Mason, 1984).  Also, the available data do not allow 

us to weigh our diversity measure by using the number of years that a team member had worked 

in a given field. In addition, we note that our data capture the upper echelons of R&D divisions. 

Even though these are key for generating innovations, it would be interesting to extend our 

research to the lower R&D team levels. 

CONCLUSION 

In a world where an increasing number of firms operate in hypercompetition, pinpointing the 

factors that shape the performance of teams affiliated with these firms is a core issue for strategy 

studies. As our results indicate, great caution is necessary when applying theories and concepts 

that were developed on the grounds of stable environments to hypercompetitive settings. We 

thus hope that our research will provide future studies with the critical information needed for 

a comprehensive understanding of the factors affecting R&D team performance in 

hypercompetition. 
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TABLES AND FIGURES 

 

TABLE 1 - Descriptive Statistics (N = 2,375) 

Variable Mean Std. Dev. Min Max 
R&D team performance -2.31 1.84 -32.045 0 
Team experience diversity 0.76 0.13 0.35 0.98 
Constructor size [M USD] 0.77 0.57 0.05 2.15 
Constructor age [years] 17.57 16.87 0 58 
Team size = 2  0.22   0 1 
Team size = 3  0.62  0 1 
Team size = 4  0.16   0 1 
Team experience 40.54 12.76 8 58 
Team tenure 0.76 1.24 0 6 
Team average age 42.72 3.51 32.33 49 
Former productivity team 
members (non-F1) 0.14 0.21 0 0.67 
Work experience Team Principal (TP): 
TP owner manager 0.31   0 1 
TP former engineer 0.23  0 1 
TP former driver 0.46   0 1 
Change in drivers:     
Same drivers 0.31   0 1 
One driver the same 0.48  0 1 
No driver the same 0.20   0 1 
Constructor type = works team 0.20  0 1 
Constructor past success 0.21  0 1 
Driver past success 0.13  0 1 
Racetrack = city track 0.12  0 1 
Weather = rainy weather 0.14  0 1 
Race of the season 8.93 4.90 1 19 
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TABLE 2 - Correlations (N = 2,375) 

  Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 R&D team performance 1    

2 
Team experience 
diversity -0.10 1   

3 Constructor size 0.44 -0.03 1   

4 Constructor age 0.29 -0.18 0.35 1   

5 Team size 0.18 -0.01 0.36 0.13 1   

6 Team experience 0.30 -0.12 0.54 0.45 0.66 1   

7 Team tenure 0.13 -0.03 0.05 0.19 -0.28 -0.01 1   

8 Team average age 0.18 -0.10 0.47 0.18 0.22 0.11 0.46 1   

9 Former prod. team 0.26 -0.04 0.31 0.37 0.10 0.08 0.27 0.27 1   

10 TP owner manager -0.22 0.22 -0.43 -0.02 -0.19 0.06 -0.24 -0.21 -0.24 1   

11 TP former engineer 0.09 0.30 0.20 0.09 -0.24 0.13 -0.12 0.07 0.08 0.24 1   

12 TP former driver 0.05 -0.15 -0.09 -0.003 0.01 -0.07 0.11 -0.07 -0.04 0.07 -0.50 1   

13 Same drivers 0.23 -0.21 0.31 0.15 0.05 0.10 0.25 0.19 0.12 -0.30 0.03 -0.01 1   

14 One driver the same -0.05 0.10 -0.12 -0.02 -0.04 -0.005 -0.12 -0.15 -0.12 0.19 0.02 -0.02 -0.65 1   

15 No driver the same -0.20 0.12 -0.21 -0.15 -0.01 -0.11 -0.14 -0.03 0.01 0.11 -0.06 0.03 -0.34 -0.49 1   

16 Works team 0.29 -0.14 0.64 0.25 0.23 0.07 0.36 0.49 0.31 -0.64 -0.10 -0.08 0.28 -0.19 -0.08 1   

17 Constructor past success 0.35 -0.04 0.28 0.47 0.03 0.30 0.29 -0.01 0.24 -0.14 0.04 0.01 0.17 -0.05 -0.14 0.18 1   

18 Driver past success 0.28 -0.14 0.24 0.31 -0.003 0.09 0.14 0.11 0.34 -0.16 -0.04 0.08 0.17 -0.13 -0.04 0.27 0.30 1   

19 Racetrack -0.07 -0.003 0.004 0.01 0.01 -0.002 0.01 -0.001 -0.004 0.001 -0.002 0.001 0.01 -0.002 -0.004 0.002 0.001 0.03 1   

20 Weather -0.01 -0.02 -0.07 0.01 -0.03 0.01 -0.04 -0.04 0.02 0.05 -0.02 -0.01 -0.02 0.04 -0.02 -0.04 0.02 -0.01 -0.06 1  

21 Race of the season 0.08 0.01 0.04 -0.001 0.03 -0.01 0.03 0.03 -0.01 -0.03 0.01 -0.01 0.01 0.004 -0.01 0.02 -0.01 -0.04 -0.29 0.06 1 
Note: Pearson correlation coefficients for two continuous variables / Point biserial coefficient for one continuous variable and one dummy variable / Phi coefficient for two dummy variables. 
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TABLE 3 – Multivariate Analysis  
 

    

Sample limited 
to race seasons 
with regulatory 

changes    
  OLS OLS OLS IV (1st stage) IV (1st stage) IV 

 Model 1 Model 2 Model 3 Model 4 
     (a) (b) (c) 

 DV: R&D team performance 

 DV: Team 
experience 
diversity 

DV: Team 
experience 

diversity (sqr)  

DV: R&D 
team 

performance 
Team experience diversity   10.162*** 14.704***     12.929** 
      [2.104] [3.403]   [5.585] 
Team experience diversity (sqr)  -7.923*** -10.558***   -10.292*** 
      [1.448] [2.348]     [3.792] 
F-test (joint significance)   F=53.90 

p=0.000 
F=21.20 
p=0.000 

    chi2=50.69
p=0.000 

Inflection point   0.64 0.70     0.63 
Constructor size [M USD] 1.054*** 1.088*** 0.960*** 0.030*** 0.047*** 1.098*** 
  [0.122] [0.114] [0.233] [0.005] [0.007] [0.118] 
Constructor age [years] -0.001 -0.002 0.008* -0.0004*** -0.0004** -0.003 
 [0.002] [0.002] [0.004] [0.0001] [0.0002] [0.003] 
Team size = 3 (dummy) 0.259 0.161 0.300 0.036 -0.015 0.138 
  [0.169] [0.165] [0.223] [0.008] [0.012] [0.139] 
Team size = 4 (dummy) 0.990*** 0.866*** 0.785*** 0.049*** 0.052*** 0.842*** 
  [0.210] [0.211] [0.278] [0.010] [0.014] [0.187] 
Team experience 0.071*** 0.066*** -0.018 0.007*** 0.011*** 0.064*** 
 [0.014] [0.014] [0.027] [0.001] [0.001] [0.017] 
Team experience (sqr) -0.001*** -0.001*** -0.000 -0.0001*** -0.0001*** -0.001*** 
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Team tenure 0.034 0.008 -0.042 0.007*** 0.007*** -0.001 
  [0.029] [0.027] [0.062] [0.001] [0.002] [0.031] 
Team average age -0.018 -0.023* 0.018 -0.007*** -0.009*** -0.026** 
  [0.013] [0.013] [0.025] [0.001] [0.001] [0.013] 
Former productivity team members 1.213*** 1.329*** 1.018*** 0.013 0.021 1.379*** 
     [0.166] [0.170] [0.316] [0.012] [0.016] [0.199] 
TP former engineer (dummy) 0.570*** 0.625*** 0.132 0.059*** 0.081*** 0.668*** 
  [0.124] [0.136] [0.206] [0.005] [0.008] [0.122] 
TP former driver (dummy) 0.499*** 0.458*** 0.132 0.012*** 0.016*** 0.445*** 
  [0.063] [0.063] [0.141] [0.004] [0.006] [0.078] 
Same drivers (dummy) 0.655*** 0.541*** 1.193*** -0.023*** -0.028*** 0.485*** 
  [0.112] [0.115] [0.241] [0.005] [0.007] [0.102] 
One driver the same (dummy) 0.556*** 0.516*** 0.916*** 0.014*** 0.023*** 0.499*** 
  [0.108] [0.107] [0.201] [0.005] [0.007] [0.088] 
Constructor type = works team (dummy) 0.075 0.036 0.100 -0.047*** -0.081*** 0.028 
     [0.121] [0.130] [0.252] [0.006] [0.008] [0.123] 
Constructor past success (dummy) 0.831*** 0.776*** 0.767*** 0.025*** 0.028*** 0.767*** 
     [0.074] [0.080] [0.142] [0.005] [0.007] [0.108] 
Driver past success (dummy) 0.612*** 0.544*** 0.009 -0.001 -0.001 0.515*** 
     [0.092] [0.091] [0.143] [0.005] [0.007] [0.104] 
Racetrack = city track (dummy) -0.352** -0.351*** -0.591*** -0.0001 -0.0002 -0.351*** 
     [0.138] [0.134] [0.195] [0.005] [0.007] [0.095] 
Weather = rainy weather (dummy) -0.076 -0.083 0.068 -0.010** -0.014** -0.086 
     [0.085] [0.080] [0.155] [0.004] [0.006] [0.089] 
Race of the season 0.019*** 0.019*** -0.002 0.0004 0.0005 0.019*** 
  [0.007] [0.007] [0.011] [0.0003] [0.0005] [0.006] 
Year dummies included included included included included included 
Share language EN    -0.279*** -0.456***   
     [0.020] [0.029]   
Share language EN (sqr)     0.123*** 0.218***   
     [0.017] [0.024]   
Share language IT    0.263*** 0.363***   
     [0.028] [0.040]   
Share language IT (sqr)    -0.455*** -0.558***   
     [0.056] [0.081]   
Share language FR     -0.004 -0.069**   
     [0.024] [0.033]   
Share language FR (sqr)    0.073** 0.198***   
     [0.032] [0.041]   
Industry av. team experience diversity    -3.743*** -5.355***   
        [0.126] [0.190]   
Constant -5.438*** -8.022*** -9.193*** 3.511*** 4.496*** -8.511*** 
  [0.569] [0.920] [1.653] [0.085] [0.131] [2.093] 
Observations 2,375 2,375 1,022 2,375 2,375 2,375 
R-squared 0.368 0.381 0.336 0.749 0.752 0.378 
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TABLE 4 - Multivariate Analysis – Test of Inverted U-Shaped Relationship 
 

  
  

Model 2 
  

 
Model 3 

 

 
Model 4 

 
  < MAX > MAX < MAX > MAX < MAX > MAX 

  Model 2a Model 2b Model 3a Model 3b Model 4a Model 4b 

 DV: R&D team performance 

Team experience  90.851*** -1.774*** 4.480*** -4.728*** 88.538*** -4.034*** 

      diversity [22.181] [0.406] [0.957] [1.326] [22.217] [0.648] 

Control variables included included included included included included 

Constant 11.686 -3.240*** 2.845 -2.458 9.797 -1.520* 
  [15.939] [0.583] [2.262] [2.634] [17.586] [0.795] 

Observations 371 2,004 326 696 371 2,004 

R-squared 0.714 0.347 0.616 0.268 0.714 0.338 

Note: Standard errors are bootstrapped with 500 replications. They are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1.  
The notation “<MAX” refers to observations whose value of team experience diversity is below the one at which R&D team performance 
achieves its maximum. Similarly, “>MAX” refers to observations whose value of team experience is above the value at which R&D team 
performance achieves its maximum. 
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TABLE 5 - Multivariate Analysis – Test of Interaction Effects 
 

  
Firm size > 

median 
Firm size > 75 

percentile 
Firm age > 

median 
Firm age > 75 

percentile 
  Model 5 Model 6 Model 7 Model 8 
 DV: R&D team performance 
Team experience diversity 6.176*** 7.445*** 19.272*** 8.845*** 
     [2.335] [2.124] [3.550] [3.054] 
Team experience diversity (sqr)  -5.112*** -5.972*** -13.548*** -6.875*** 
    [1.604] [1.453] [2.402] [2.050] 

F-Test (joint significance) 
F=17.84  
p=0.000 

F=29.39  
p=0.000 

F=35.12 
p=0.000 

F=22.89 
p=0.000 

Inflection point 0.60 0.62 0.71 0.65 

Diversity * large constructor 10.603** 18.895***    
  [4.175] [4.936]    
Diversity (sqr) * large constructor -6.990** -12.590***    
  [2.877] [3.468]    
Large constructor (dummy) -3.354** -6.590***    
  [1.509] [1.708]    
Diversity * old constructor   -10.893*** 6.113 
    [4.197] [4.744] 
Diversity (sqr) * old constructor   6.971** -3.880 
    [2.904] [3.638] 
Old constructor (dummy)   3.660** -2.096 
      [1.485] [1.511] 
1*4-2*3 11.036* 19.110**     
(size) [6.746] [8.215]     
1*4-2*3     228.800** -61.004 
(age)     [130.970] [49.648] 
Constructor size [M USD]   1.080*** 0.934*** 
   [0.122] [0.145] 
Constructor age [years] -0.001 -0.002   
 [0.003] [0.003]   
Team size = 3 (dummy) 0.144 0.176 -0.073 0.089 

  [0.185] [0.176] [0.171] [0.191] 
Team size = 4 (dummy) 0.946*** 1.040*** 0.565*** 0.757*** 
  [0.211] [0.203] [0.198] [0.216] 
Team experience 0.058*** 0.062*** 0.058*** 0.050*** 
 [0.017] [0.018] [0.015] [0.018] 
Team experience (sqr) -0.001*** -0.001*** -0.001*** -0.001*** 
 [0.000] [0.000] [0.000] [0.000] 
Team tenure 0.065** 0.058** 0.094*** 0.063** 
  [0.027] [0.027] [0.026] [0.028] 
Team average age -0.013 -0.001 -0.002 -0.006 
  [0.013] [0.013] [0.013] [0.013] 
Former productivity team members 1.369*** 1.404*** 1.125*** 1.168*** 
     [0.179] [0.215] [0.176] [0.179] 
TP former engineer (dummy) 0.735*** 0.762*** 0.481*** 0.432*** 
  [0.123] [0.149] [0.130] [0.128] 
TP former driver (dummy) 0.493*** 0.500*** 0.389*** 0.393*** 
  [0.075] [0.069] [0.066] [0.067] 
Same drivers (dummy) 0.607*** 0.630*** 0.356*** 0.500*** 
  [0.110] [0.129] [0.110] [0.111] 
One driver the same (dummy) 0.513*** 0.579*** 0.360*** 0.454*** 
  [0.104] [0.115] [0.103] [0.109] 
Constructor type = works team (dummy) 0.389*** 0.524*** -0.148 0.034 
     [0.104] [0.106] [0.130] [0.162] 
Constructor past success (dummy) 0.704*** 0.938*** 0.875*** 0.665*** 

 [0.085] [0.081] [0.083] [0.087] 
Driver past success (dummy) 0.593*** 0.553*** 0.560*** 0.490*** 
     [0.092] [0.090] [0.088] [0.090] 
Racetrack = city track (dummy) -0.349** -0.347** -0.348** -0.347** 
     [0.150] [0.137] [0.139] [0.137] 
Weather = rainy weather (dummy) -0.037 -0.036 -0.053 -0.059 
     [0.087] [0.080] [0.080] [0.083] 
Race of the season 0.020*** 0.020*** 0.020*** 0.020*** 
  [0.007] [0.007] [0.007] [0.007] 

Year dummies included included included included 
Constant -6.695*** -7.582*** -11.648*** -7.554*** 
  [1.041] [0.940] [1.367] [1.260] 
Observations 2,375 2,375 2,375 2,375 
R-squared 0.341 0.331 0.361 0.352 

Note: Standard errors are bootstrapped with 500 replications. They are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1. 
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FIGURE 1 - Distribution of R&D Team Performance (N = 2,375) 

 

 

FIGURE 2 - Distribution of Team Experience Diversity (N = 2,375) 
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