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Abstract

As university involvement in technology transfer and entrepreneurship has increased, concerns over the patenting
and licensing of scientific discoveries have grown. This paper examines the effect that the licensing of academic
patents has on journal citations to academic publications covering the same scientific research. We analyze
data on invention disclosures, patents, and licenses from the University of California, a leading U.S. academic
patenter and licensor, between 1997 and 2007. We also develop a novel “inventor–based” maximum–likelihood
matching technique to automate and generalize Murray’s (2002) “patent–paper pairs” methodology. We use this
methodology to identify the scientific publications associated with University of California patents and licenses.

Based on a “differences–in–differences” analysis, we find that, in general, licenses are associated with an
increase in journal citations to related scientific publications. The timing of this effect supports recent research
that suggests that academic licenses may act as positive signals of research potential in research fields linked to
the licensed invention (Drivas et al. 2014). In contrast, we find that licensing of research inputs (which we identify
through the use of material transfer agreements, or MTAs) depresses citations to related scientific publications.

Our results suggest that, overall, licensing of academic patents does not limit scientific communication linked
to patented academic research. But our findings on the effects of licenses on research inputs, however, raise the
possibility that licensing may restrict the flow of inputs to further scientific research among researchers.
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1 Introduction

Growth in patenting of academic research advances in U.S. and other universities within the

OECD has triggered considerable debate since at least 1980, the year of passage of the U.S. Bayh–

Dole Act. Supporters contend that patenting and licensing of university inventions can speed

the transfer of scientific discoveries to the private sector, promoting the commercialization of such

advances. On the other hand, critics predict a collision between the norms of science and the norms of

commerce, arguing that the exclusionary effects of patents will slow the progress of science. Despite

the importance of this question, there has been relatively little empirical work on the extent to

which the patenting of academic research results affects scientific research progress. The modest

volume of such work (e.g., Fehder et al. (2014), Murray and Stern (2007)) reflects the challenge of

obtaining data that can be used to examine such effects.

This paper develops a new approach to matching scientific publications and patents, and employs

this methodology to examine the effect of licensing on the journal citations to related publications.

We interpret increased citations to these scientific publications after a license issues as evidence

that licensing is correlated with a positive effect on the prominence and use by other scientists of

the knowledge embodied in the paper, while decreases in such citations may indicate a restrictive

effect of licensing on scientific communication. Drawing on related work by Walsh et al. (2007),

we also examine the effect of licenses on related scientific publications covering the inputs to the

experiments of other researchers, a class of knowledge often referred to as “research tools.”

The next section of this paper discusses the use and potential effects on scientific research of for-

mal intellectual property rights covering academic discoveries. We describe our data and its relevance

to this question in Section 3. We then explain our methodology for constructing publication–patent

matches, and describe how we construct a plausible counterfactual for our treatment observations

in our empirical analysis (Section 4). We present the results of our analysis in Section 5. Finally,

we discuss the implications of our results and conclude with a summary of the contributions and

limitations of this paper in Section 6.
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2 Research and Intellectual Property in Academia

Universities have long been important performers of research, particularly basic research, in the

United States and other industrial economies, ranging from 48.9% of U.S. basic R&D expenditures in

1979 to 53.4% in 2009 (National Science Foundation 2012; Table 4-4). At least since the 1970s, this

expanded role of U.S. universities in research performance has coincided with growth in patenting

and licensing of university discoveries, particularly in biotechnology.

The roles of universities as sources of basic knowledge and as sources of potentially valuable

ingredients for commercial innovation raises the possibility of conflict between these roles, with

detrimental consequences for the advance of scientific research. Do patents and licenses restrict

access to such knowledge? Or is the existence of a patent and/or a license for that patent a signal

of the quality of scientific work that leads to greater exploration of the area?

Our examination of the effects of patenting and licensing on scientific communication focuses on

“patent–linked publications” (Murray 2002). These are discoveries that are published in scientific

journals and become the subject of successful patent applications.1

2.1 The Effects of Intellectual Property Protection and Licensing on Scientific

Research and Communication

An array of factors, including the Bayh–Dole Act of 1980, other changes in U.S. intellectual

property laws and policies, and expanded federal support for academic biomedical research, has

increased the patenting of academic research by U.S. universities during and after the 1970s. The

growth in such patenting has been the subject of a large literature and considerable debate over its

effects on the scientific research enterprise (e.g., Mowery et al. (2004)).

Heller and Eisenberg (1998) argue that expanded patenting of academic research results may

result in fragmented and overlapping property rights covering upstream biomedical research, limiting

the ability of scientists to access patented and licensed research outputs for follow–on research. Other

scholars raising concerns over the expanded assertion of property rights in science include Nelson

(2004) and David (2004). Empirical research seeking to assess the effects of patenting on scientific
1In our empirical analysis, we allow for the possibility that multiple scientific publications may be associated with

each patented discovery, unlike Murray (2002), Murray and Stern (2007), and Fehder et al. (2014), who identify a
single patent linked to each publication in their samples. We discuss the construction of our sample of patent–linked
publications in Section 4.
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communication has examined the effects of patenting on biomedical researchers’ willingness to share

information on their work (Blumenthal, et al., 1997; Campbell, et al., 2002). More recent research

has analyzed the effects of patenting biomedical discoveries that are also disclosed in scientific

papers. Some of this work finds that the issuance of a patent results in modest but significant

declines in citations to the research papers related to the patent (Murray and Stern 2007, Sampat

2005).2 Similarly, Williams (2013) finds that patenting of genes by the private firm Celera reduced

citations to related scientific research. Other work, however, argues that biomedical researchers

rarely if ever search to determine whether a prospective research project or experiment will infringe

on patents (Lei et al. 2009, Walsh et al. 2007), raising a question about the mechanism behind any

observed citation decreases.

Empirical research on the effects on scientific communication of academic patenting and licensing

of discoveries has focused mainly on patenting of academic research results. The effects of university

licensing of patents on scientific research have received much less attention from scholars. Unlike

patents, licenses are not published or otherwise subject to mandatory disclosure. In many cases

the identity of licensees is treated by university technology transfer offices as confidential (Ziedonis

2007).

Why and how might licenses for a specific research advance affect the behavior of academic

researchers not involved as authors or patent holders? Sampat and Ziedonis (2005) examined patent

citations to Columbia University and University of California patents that were licensed. They find

that higher numbers of citations were associated with an increase in the likelihood that a patent

would be licensed. Moreover, most citations occurred after the patent was licensed. These scholars

interpret this pattern of increased patent citations as indicating market interest in the technological

area surrounding the licensed patents. More recently, Drivas et al. (2014) find that citations by

non–licensees to patents exclusively licensed (based on restrictions covering either geographic area

or field of use) by the University of California increased after the licenses were executed. Similar to

Sampat and Ziedonis, Drivas et al. regard the increase in non–licensee patent citations as a reaction

to the potential commercial value signaled by the negotiation of the license.

It is possible that a similar signaling effect associated with the execution of a license could in-
2In follow–on work, Fehder et al. (2014) find that the negative effect is most pronounced for patent–related papers

published in the early years of a journal’s founding.
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crease citations to patented publications linked to the license. In such a case, the issue of a license

“demonstrates” that a particular area of research has scientific value, leading other investigators

to pursue work in closely related fields. It is also possible (see Larsen (2011)) that contemporary

academic researchers may choose research areas partly based on their potential commercial value,

and therefore might respond positively to a “signal” that a given area of research has attracted the

attention of industrial licensees. Regardless of whether a license signal operates through percep-

tions among researchers of scientific or commercial potential, this argument predicts an increase in

citations to patented publications following the negotiation of the license.

Equally plausible arguments, however, suggest a chilling effect of licensing on scientific commu-

nication. Reactions by university technology licensing offices and/or their licensees to any evidence

of patent infringement (even for research purposes, inasmuch as the legal status of the informal

research exemption from such infringement suits remains unclear) may be swifter and stronger in

the case of patents that are licensed. And licenses may include provisions for reach–through roy-

alties and limitations on the disposition of intellectual property on follow–on research. Moreover,

the negotiation of a license may take considerable time, delaying access to the materials or tools

embodied in the disclosure.

We are thus agnostic on the likely direction of any effect of licenses on scientific communication

associated with publications linked to licensed academic patents. Indeed, both effects may be present

for papers in various fields of research, and we hope that our findings shed light on the magnitude

of any offsetting effects.

2.2 Research Inputs and Material Transfer Agreements

Patents and licenses increase the “excludability” of intellectual property for other researchers,

exposing them to potential legal liability in the event that they utilize or exploit the intellectual

property protected by patents and issued to others for their own research or commercial use. A

very different form of excludability, highlighted by Walsh et al. (2007), concerns the denial by

one researcher of physical access to materials (or other research results) that are inputs to the

experiments of another researcher. The survey results of Walsh et al. (2007) indicate that such

denials can impose significant costs and delays on the scientific work of other researchers, costs and

delays that according to these authors, exceed those associated with patents.

4



Research inputs have been widely (and imprecisely) identified as “research tools.” For example,

the NIH Working Group on Research Tools (1998) defines them as “the full range of resources

that scientists use in the laboratory. . . the term may thus include cell lines, monoclonal antibodies,

reagents, animal models, growth factors, combinatorial chemistry libraries, drugs and drug targets,

clones and cloning tools (such as PCR), methods, laboratory equipment and machines, databases

and computer software.”3

As we noted above, Walsh et al. (2007) argue that denials of access to such research tools are

more likely when the erstwhile supplier of them is engaged in “commercial activity,” such as licensing

of the invention disclosure associated with the tools. Interviews conducted for this study support

this view, with one scientist involved in a start–up firm saying “if another company asked to use our

[materials] for [the same purpose as our company uses them] we would say ‘no.’ ”4

Even when permission is granted, however, researchers gaining access to research tools that are

associated with licensed disclosures may encounter difficulties, as highlighted by the celebrated case

of the Oncomouse (Murray 2010):

“In 1984, scientists at Harvard University carefully engineered a new mouse to have a
predisposition to cancer, the Oncomouse. . . The Harvard researchers . . . patented their
creation and subsequently licensed this patent to DuPont. . .

[Dupont] set a high price per mouse. . . placed restrictions on breeding programs. . . demanded
publication oversight. . . [and] insisted upon a share of any commercial breakthroughs
made using the Oncomouse.”

These and similar restrictions may have an adverse effect on the use by other researchers of

research tools such as the Oncomouse. Moreover, as the NIH Working Group on Research Tools

(1998) noted in its report, licensees may have an incentive to restrict access to these materials:

“If the sponsor or licensee plans to develop the research tool as a commercial product for
sale to researchers, it may be unwilling to permit the university to undercut its position
in this particular market by giving the tool away to potential paying customers.”

Surveys of scientists by Walsh et al. (2007) and Lei et al. (2009) find that requests by researchers

for research tools from industrial researchers, a group more likely to be engaged in commercial

applications of research, were rejected approximately twice as often as requests to other academics.
3The National Research Council panel has a similarly broad definition that includes materials that “. . .may be

critical inputs for the success of a research project.” (National Research Council 2010; p. 7).
4Even though this scientist was unwilling to share materials in this instance, in other instances he/she had shared

materials.

5



As the discussion of “research tools” indicates, developing a definition that facilitates their iden-

tification and empirical analysis is challenging. The definitions of research tools employed by the

NIH Working Group and Walsh et al. (2007) are very broad and do not lend themselves to empir-

ical operationalization. Instead of attempting to develop and defend a definition of research tools

that relies on the characteristics of the relevant invention disclosure or patent, we identify research

tools based on the existence of a Material Transfer Agreement (MTA) associated with a patented

invention disclosure.

Material Transfer Agreements (MTAs) are agreements that govern the transfer and exchange

of materials, usually biological, used in research. Although the informal exchange by researchers of

biological materials for use in fundamental research has a long and occasionally controversial history

in the biomedical sciences, these materials exchanges historically were governed by little more than

a letter from the source accompanying the materials, requesting acknowledgement and in some cases

asking that the materials not be passed on to third parties (McCain 1991). The more elaborate

MTAs used in contemporary materials exchanges appear to be a byproduct of the post–1980 surge

in academic patenting (Streitz and Bennett 2003).

One of the few analyses of the role of MTAs in the scientific research enterprise is Scott Stern’s

discussion of biological resource centers (Stern 2004). Biological resource centers (BRCs) are non-

profit materials depositories that play a key role in maintaining the reliability and provenance of

cell lines used by industrial and academic researchers—as Stern notes, contamination of widely used

cell lines has caused major research fiascoes in the past several decades. Stern argues that the use

of MTAs by BRCs has aided the exchange of materials, and recommends that MTAs be a standard

complement to patents covering biological discoveries: “Putting MTAs in place at the time of patent

approval lowers the cost of mutually beneficial transactions between the developers of materials and

follow–on researchers and widens the availability of patented biomaterials” (2004; pp. 96–97). Sim-

ilarly, Walsh et al. (2003) argue that the formalization of materials exchanges through MTAs may

simplify these transactions and facilitate researcher access.

To confirm that MTAs are a good indicator that an invention disclosure is associated with a

research tool, we examine UC Berkeley data on incoming MTAs—that is, the agreements accom-

panying research materials requested from other researchers by UC Berkeley researchers. These

data describe the requested materials and their intended use by the recipient UC Berkeley re-
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searcher. We analyzed a random sample of 50 of these MTAs, and found that 44% were related

to DNA/RNA/Plasmids, 32% concerned cell lines or other biological/chemical agents, 16% were

animal models, 6% were data transfers, and 2% were concerned with “other non–research inputs.”

Overall, therefore, 98% of these MTAs involved materials that fit within the NIH Research Tools

Working Group definition of research tools. We also analyzed the intended use for the materials

requested through the MTA by UC Berkeley researchers, and found that 94% of the MTAs indi-

cated that the requested material was to be used as an input to further research and a further 4%

implicitly indicated that such uses were intended.

This analysis of UC Berkeley MTAs leads us to conclude that our treatment of the presence of

an MTA as an empirical indicator that a given invention disclosure is a research tool and/or input to

follow–on scientific research is defensible. It is important nevertheless to note two caveats associated

with our empirical use of MTAs as indicators of research tools. As Walsh et al. (2007) and Mowery

and Ziedonis (2006) point out in their discussions of MTAs, a majority of the materials transfers

among academic scientists do not rely on formal MTAs that are disclosed to academic Technology

Transfer Offices (TTOs). Although we believe that the presence of an MTA is a reasonable indicator

that a given disclosure has applications as a research tool, our data in fact contain many other

disclosures (including disclosures that are patented and licensed) that may well be research tools

but (lacking an MTA) cannot be identified as such. It is likely that our empirical approach thus

understates the effects on citations of licensing of patented disclosures that are research tools. In

addition, our data enable us to only identify the “effects of MTAs” that are negotiated and agreed

to by all parties to the materials transfer. In other words, and in contrast to Walsh et al. (2007),

we do not identify the effects on scientific research of the denial by researchers of other researchers’

requests for research materials.

Based on these arguments, we anticipate that access to research tools (inputs to other scientific

experiments) that are associated with licensed intellectual property (a sign of the commercial ex-

ploitation, prospective or otherwise, of the intellectual property) may well be restricted, even when

terms for its exchange among researchers are successfully negotiated through a Material Transfer

Agreement (MTA). Licensing of IP related to research tools thus may have negative consequences

for follow–on scientific research and therefore may have a negative effect on citation rates for pub-

lications related to such IP.
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3 Data

We draw on two principal sources of data for our empirical analysis. The first, the “IP data,”

is an extract from the technology disclosure database maintained by the technology transfer office

within the University of California Office of the President (UCOP). UCOP monitors and in some

cases manages invention disclosures, patent applications, and licensing transactions for all campuses

of the University of California (nine campuses, including five medical schools, during the period of

our study).

These data list all 11,341 inventions reported by University of California faculty from 1997 to

2007. These disclosures led to 2,035 issued U.S. patents, 1,890 licenses to these patents, and 3,853

MTAs by the end of 2009. Note that only a small subset of technology disclosures is patented,

and universities’ patenting propensity varies among fields of academic research—since the 1980s,

patenting and licensing activity at UC has been dominated by biomedical research (Mowery et al.

2004). The distribution of MTAs also is highly skewed, with few disclosures generating the majority

of MTAs and many disclosures associated with no MTAs. This echoes the finding in Mowery and

Ziedonis (2006) that MTAs are disproportionately concentrated in biomedical fields of research, as

are licenses.

The second source, “publications data,” comes from Web of Science, an internet–based service

that tracks the bibliographic information and the citations to and from articles published in 10,000 of

the highest-impact journals across 256 disciplines.5 This database supplied the title, author names,

journal, publication date, and citation information for each scientific paper. The information on

“forward citations,” citations from later published papers to that publication, was extracted through

the end of 2009. The Web of Science also provides a number of well–accepted measures of journal

quality. The most prominent of these is an “impact factor” that measures the average number of

times an article in that journal is cited in its first two years, and which we include in our analysis.
5http://thomsonreuters.com/products\_services/science/science\_products/a--z/web\_of\_science

(downloaded May 2010).
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4 Methodology

In this section we describe our empirical methodology. We explain how we identify the publica-

tions related to each patent, how we construct groups of treatment and control observations that

are comparable save for the treatment effect, and finally we discuss our estimation technique.

Our analysis searches for differences in the citations associated with publications linked to

patented discoveries, depending on whether or not they are licensed. One advantage of restrict-

ing our comparison set to patent–linked publications is that they are likely to be similar in quality

and other characteristics. In particular, since all of the underlying disclosures are patented, dif-

ferences in “commercializability” are considerably lower than they would be in a general sample.

Nevertheless, there may well exist other unobserved differences between the patented publications

that are licensed and those that are not. Below we describe how we construct a control sample and

employ an difference–in–differences specification to address this issue.

4.1 Linking Invention Disclosures, Patents, and Scientific Publications

Observing the effect of licensing a patent on citations to a related publication requires identifying

the linkages among publications, patents, and licenses. The connections among disclosures, patents,

and licenses are contained in the data provided by UCOP, which tracks these directly. But the UC

data themselves provide no direct link between published papers and any patents covering the

research advances covered by them–what Murray and Stern (2007) terms “patent-paper pairs.”

Prior efforts to link patents to scientific publications used techniques that differ somewhat from

those developed in this paper. Murray and Stern (2007) matches patents to articles published in

Nature Biotechnology by reading both patents and the academic articles and relying on expert judg-

ment to connect them. Azoulay et al. (2012) used an algorithm that matches specific characteristics

of publications in the biomedical sciences that are included in the PubMed database to information

contained in the scientific references of patents within biomedical and chemical patent classes to

identify patent–paper pairs for 9,483 academic scientists working in the life sciences.

The Murray and Stern (2007) and Azoulay et al. (2012) techniques are less well suited to our

study. The size and diversity of our sample makes it difficult for us to assemble the requisite

scientific and technical expertise to assess each potential patent–paper pair by hand. In addition,

9



our construction of this dataset matching patents and scientific papers covers a range of scientific

disciplines that includes not only the life sciences but also physical sciences, which means that the

PubMed database would not cover our entire set of publications.6

Our methodology instead employs an “inventor–based matching” technique to link patents to

scientific papers. Inventor–based matching relies on two assumptions. First, inventors listed on a

patent are likely to be the authors listed on related publications. Second, the patent application

date is likely to occur near the publication date of the academic article. Based on these assumptions

we construct a maximum–likelihood estimator for the publication(s) that best matches a particular

patent. For each inventor name listed in the patent, we first identify all publications authored

within a five–year window that includes the year of the patent application and the two years prior

to and following the application year (t-2 to t+2 ). We match papers to patents by selecting the

publications for which the inventors listed on the patent overlap to the greatest extent with the co–

authors of the papers that are linked to the patent. Those publications with the greatest overlap are

chosen as matches. For example, consider U.S. patent number 7,011,723, “Adhesive Microstructure

and Method of Forming Same.” This patent pertains to adhesives inspired by the physiology of

the foot of the gecko and credits four inventors. In this case, we extract four publication sets (one

for each inventor) and retrieve publications common to all four inventors. Figure 1 illustrates this

process for this patent.

∗∗∗ Figure 1 Here ∗∗∗

Our approach can result in multiple publications as “best” matches, in contrast to Murray

and Stern (2007), which links one publication to each patent. For the example patent described

above, the inventor–based matching approach yields two matches of the underlying invention to

publications in scientific journals. The first, entitled “Adhesive Force of a Single Gecko Foot–Hair,”

appeared in Nature in March 2000. A second article, “Evidence for Van der Waals Adhesion in

Gecko Setae” was published in Proceedings of the National Academy of Sciences in 2002. In this

case, all four patent inventors were listed on each publication.

Inventor–based matching does not restrict us to instances in which all inventors are listed as

authors on the publication. For instance, if in the example above a lab technician was also listed
6Non-biomedical fields are well represented in our data as roughly half (52%) of our observations come from outside

the disciplines of biochemistry, biology, and medicine.
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as an inventor on the patent, but was not included on any linked academic publications, the al-

gorithm would choose the publication(s) with the maximum possible overlap. In this instance the

publications listing four of the five inventors would be chosen since there would be no five–out–of–

five–inventor matches.7

As highlighted above, the inventor–based matching method enables us to link a single patent

with more than one publication. Such a match will occur precisely when multiple publications share

the same level of overlap between the inventors, and no publications have a greater overlap.8 In

general, accurate matches are less likely when the precision of the estimate is low. For example, our

matching algorithm would be unlikely to produce correct matches if, on a four–inventor patent, we

identified only publications that listed a single inventor as an author. In this case, the algorithm

would identify as matches all publications by all of the inventors in the relevant (t-2, t+2 ) window,

many of which could be false positives (papers where an author has the same name as the patent

inventor but is not the same individual). To improve the precision of the estimate and limit such

Type I errors, we restrict matches to those with three or more inventors/authors. The logic behind

this criterion is illustrated in Figure 2, which plots the number of papers matched to each patent

in our dataset linked by at least two inventors and authors and lists the number of names common

to both the patent and the published paper.

∗∗∗ Figure 2 Here ∗∗∗

Figure 2 shows that 82% of the sample patents are linked by the inventor–based matching

algorithm to between one and five papers, while the remaining 18% of our patents match to six or

more publications. The large number of papers associated with each of the patents in the 18% may

reflect common scientist names (e.g., “J. Smith”). Figure 2 also demonstrates that patents matched
7Based on a survey of life scientists, Haeussler and Sauermann (2013) propose that the underlying processes

determining publication authorship and patent inventorship differ. There is little evidence to suggest that these
differing processes would bias our inventor–based matching methodology, however.

8We assume that a publication and a patent are more likely to be a match if they share an author:

p
(
matchpubi,patentj | authork ∈

(
authorspubi ∩ inventorspatentj

))
> p

(
matchpubi,patentj

)
Here authorspubi and inventorspatentj are the sets of authors for publication i and the inventors for patent j,
respectively. Given these parameters, pubm is a “match” for patentj if

m ∈ argmax
i

∏
i,k

p
(
matchpubi,patentj | authork ∈

(
authorspubi ∩ inventorspatentj

))
As with all maximum–likelihood estimators, a “best” estimate is not necessarily precise (Casella and Berger 2002).
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to more than five publications typically have only two names that are common to both the inventor

list and the author list.

The restriction of three or more inventors/authors imposes the following conditions on our

sample: (a) a patent must have at least three inventors, and (b) the associated publication must list

at least three of those inventors as authors. Figure 3 depicts the consequence of these restrictions

on the sample.

∗∗∗ Figure 3 Here ∗∗∗

Column 1 in Figure 3 represents the 2,035 patents in the IP data. By excluding patents with

fewer than three inventors, we omit 944 patents listing one or two inventors (Column 2) from the

full sample, leaving 1,091 patents. From these 1,091 we exclude an additional 363 three–or–more–

inventor patents where fewer than three inventors were listed as authors on any publication, resulting

in a remaining sample of 728 patents (Column 3). Of these 728 patents, 406 list three inventors,

201 list four inventors, and 121 list 5 or more inventors. The fourth column of Figure 3 reports the

number of journal citations “per patent,” (i.e., the number of journal citations for all publications

that are matched, using the three–name overlap restriction, to that patent).

We examine the effect of restricting our sample to higher levels of inventor–author overlap by

comparing the sample statistics of 3–inventor overlap and 4–inventor overlap samples, as shown in

Columns 1 and 2 in Table 1.

∗∗∗ Table 1 Here ∗∗∗

The average publication year, publication age when the citations are observed, and the publi-

cation ages when licenses and MTAs are issued are stable across the samples, thus offering little

reason to expect that differences in means for these variables will affect the results of our statis-

tical analysis. In contrast, two measures of publication quality, the number of citations per year

and the average impact factor of the publication’s journal, are higher in the 4+ inventor overlap

sample in Column 2. The 4+ inventor overlap restriction thus appears to produce an increase in

average publication quality, which we argue supports our usage of higher overlaps to reduce “false

positives”—papers with a set of co–authors that matches those on a patent, but which are not actu-

ally linked to the patent. Since Murray and Stern (2007) report that publications linked to patents
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receive more citations than publications with no associated patents, the exclusion of false matches

(i.e., unpatented publications) should increase publication quality—which is what we observe.

To assess the validity of this matching algorithm, we compare its output with the hand–matches

compiled by Murray and Stern (2007).9 For each patent in the Murray and Stern sample, we

generated maximum–likelihood estimates of the “best” publication matches using our inventor–

based matching technique.10 Of the 170 patent–publication pairs identified by Murray and Stern,

our automated method determined an identical “best” publication match for 95% of the sample. In

a small number of cases (4%), our algorithm identified a “better” match.11 Only in two cases (1%

of their sample) did our approach yield matches otherwise inconsistent with their hand–matching

process.

In summary, our inventor–based matching approach, while demonstrating accuracy comparable

to the hand–matching approach employed by Murray and Stern (2007), possesses several advantages:

(a) it does not impose a simple one–to–one relationship between patents and publications; (b) it is

transparent, reproducible, and does not rely on domain expertise; (c) it is automated; and (d) it is

generalizable across scientific fields.

4.2 Construction of Treatment and Control Groups

Designing an adequate specification to test the effect of licensing on scientific communication is

a challenging exercise, because of the complex and varied patterns of citations that publications may

receive during our sample period. Citations to some publications may grow throughout the period

covered by our data, whereas for other publications, citations may rise, peak, and then decline.

Moreover, the timing and rate of any ascent and descent in citations may vary. It is thus difficult

to construct a sufficiently flexible parametric model to adequately accommodate these differences.12

9Fiona Murray and Scott Stern graciously provided their data to us for comparison.
10We used a 2+ inventor overlap sample in this test to ensure that we use as much of this limited hand–matched

sample as possible for validating our method. The 3+ overlap required for our main analysis provides stronger
evidence for matches than what we test here.

11The difference here is likely because of the direction of matching. Murray and Stern began with a set of pub-
lications and found the most–similar patent, whereas our analysis starts with a patent and finds the most–similar
publications. The patent identified by Murray and Stern may have been the best match for that publication, but
another publication may be an even better match to that patent.

12For example, it is reasonable to assume that publications in more highly cited journals accrue more citations,
which would argue for including Journal Impact Factor as a control variable. Similarly, the academic discipline
(hereafter Journal Subject) could also drive citation patterns, as could patterns of citations to a publication prior to
the license (Citations in t-1, Citations in t-2 ). Each of these the effects could be non–linear, which would suggest
the inclusion of higher–order terms. Interaction terms among these variables would also be important, since the

13



Because of the complex and potentially non–linear interactions of various control variables that we

employ to construct treatment and matching control groups, we pursue a flexible nonparametric

approach. This technique allows us to weaken the assumption of linearity and enables us to account

for the many plausible interaction effects that could be present in our analysis.

The non–parametric method we use is “nearest neighbor” matching. It searches the set of non–

treatment observations to identify the one “closest” to each treated observation. Collectively, these

“closest” non–treatment observations form a control group. Because this search is done based on

observable characteristics, the control and treatment observations should be similar along these

dimensions.13

We identify these “nearest neighbors” using the “Matching” package for R software,14 which

employs the evolutionary search algorithm “genetic matching” to pair treatment observations with

potential controls and iteratively improve covariate balance (Diamond and Sekhon 2013, Sekhon

2011).15 According to Sekhon (2011), genetic matching “dominates the other matching methods

in terms of MSE [Mean Squared Error] when assumptions required for EPBR [Equal Percent Bias

Reduction] hold and, even more so, when they do not.”16

Our procedure employs two types of variables, those where we specify an exact match and those

where a nearby (nearest neighbor) match is sufficient. We require an exact match on the following

variables:

• Publication Age: Number of years between paper publication date and year of “treatment,”
i.e., license issue

• Journal Subject: Academic discipline of the journal (e.g., medicine)

effects of Journal Impact Factor could differ by discipline, to cite only one example. Each of these effects could affect
a publication differently at different points in time, calling for them to be interacted with age fixed effects. Fully
interacting all of these effects would result in many of the parameter estimates being determined by small numbers
of observations, or lacking observations at all.

13Restricting ourselves to control observations that satisfy our matching criteria decreases our sample size. The
effects of a smaller sample size on the precision of our estimates, however, are ambiguous. Smaller samples will
tend to reduce our precision (making the standard errors larger), but this loss of precision may be offset by greater
homogeneity within the smaller sample of treatment and control observations.

14Available from the Comprehensive R Archive network at http://CRAN.R-project.org/package=matching (R
Core Team 2014)

15Treatment and control variables are in “covariate balance” when they have the same joint distribution of their
observed covariates (Diamond and Sekhon 2013).

16This is the first innovation study of which we are aware that employs the nearest neighbor technique with genetic
matching in place of other procedures such as propensity scoring or coarsened exact matching. Previous studies in
the social sciences that utilize genetic matching include Morgan and Harding (2006), Gilligan and Sergenti (2008),
Eggers and Mainmueller (2009), Ladd and Lenz (2009), Gordon (2009), and Hopkins (2010).
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• Patent Granted (yes/no): Whether the related patent has been granted at the time of license

• MTA Issued (yes/no): Whether the paper has an associated MTA at the time of the license

For example, these restrictions imply that in our analysis a (licensed) treatment observation in

the life sciences with an issued patent and no MTA would be compared with a non–licensed control

group observation in the life sciences with an issued patent and no MTA, and the number of years

since publication would be identical for the treatment and control observations.

For each treatment observation that matches on these exact characteristics, we then choose its

nearest neighbor based on its proximity in the following five characteristics:

• Journal Impact Factor

• Publication Year

• Citations in t-2 : Number of citations two years before the treatment

• Citations in t-1 : Number of citations one year before the treatment

• Slope of citation curve between t-2 and t-1.

In each of these dimensions we limit the maximum “distance” between each treatment and

control observation to one standard deviation for that variable (the “caliper”), thus excluding any

observation that differs by more than that amount for any characteristic.17 Under this procedure,

treatment observations with no equivalent control observation are dropped from the sample. Collec-

tively, these restrictions produce control observations such that for each characteristic, the control

matches either exactly or within one standard deviation to the corresponding treatment observation.

Before we estimate the effects of licensing on citations to patented publications, we must verify

the covariate balance between the treatment and control groups. An effective matching procedure

should yield summary statistics for the treatment and control groups that are similar. Table 2

reports the mean of each variable for the treatment and control groups produced by genetic matching

and the results of t–tests (difference of means) and Kolmogorov–Smirnoff (KS ) tests (difference in

distributions) between these two groups.

∗∗∗ Table 2 Here ∗∗∗
17Coarsened exact matching is one alternative matching approach. Employing a caliper–based method rather than

coarsened exact matching, however, allows us to exclude observations whose observable covariates would make them
outliers as well as those which would qualify them as “inliers,” that is, observations that are within the range of the
data, but nevertheless lack a comparable control observation (Sekhon 2011).
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The means and distributions for first four variables reported in Table 2, Publication Age, Journal

Subject, Patent Issued, and MTA Issued, are equal between the treatment and control groups, which

is not surprising in light of our requirement for an exact match in these dimensions across the

two groups. For the remaining variables, means for the control and treatment groups are similar,

although there are economically small, but statistically significant differences for Journal Impact

Factor, Citation Slope and Citations in t-1. These statistically significant differences suggest that

further analysis (in our case: a difference–in-differences specification) should be used to ensure that

these differences are not driving the result. That said, the small magnitude of these differences

suggest that these variables would have to have very large coefficients to meaningfully bias our

results (e.g., a Journal Impact Factor difference would have to cause a very large difference in post–

licensing citations). The analysis described below confirms that these differences do not meaningfully

influence our estimates.

4.3 Estimation

Once we have generated our treatment and control group sample, we employ a difference–in–

differences approach to account for any remaining unobserved differences between the treated and

control observations and to estimate the size and direction of the treatment effect. More specifically,

we compare the change in the number of citations to one patented publication following the execution

of a license (a treated observation) to the change in number of citations for a comparable publication

that lacks a license (a matching control observation). A citation by a scientist to his or own prior

publication would not represent a knowledge flow, thus we exclude papers where at least one of the

authors of the citing publication is also an author of the cited publication (i.e., a self–citation).18

We define our outcome of interest as:

Treatment Effect (t−1)→(t+i) = (Citationst+i − Citationst−1)pubw/License

− (Citationst+i − Citationst−1)pubw/o License

(1)

where i is the number of years after the license, ranging from 1 to 3.
18A few publications receive large numbers of citations, creating a concern that these outliers could unduly influence

our empirical results. To ensure that the results reflect the central tendency of the data rather than these extremes,
we trim the 2.5% highest and lowest values and estimate our coefficients on the remaining 95% of the sample.
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The specification is as follows:

∆Citations(t−1)→(t+i) = β0 + γLicense+ β1Age

+ β2Publication Y ear + β3Journal Subject+ β4Journal Impact Factor

+ β5Citationst−2 + β6Citationst−1 + β7Citations Slope

+ β8MTA Issued+ β9Patent Granted+ ε

(2)

Our coefficient of interest is γ, which we present in our results.19

Using a difference–in–differences estimator allows us to avoid bias associated with changes that

affect the “before” and “after” periods equally. For example, in the matched sample case, if a

particular publication receives on average five additional citations per year due to some unobserved

covariate, these citations will be included in both Citationst−1 and Citationst+1 terms, thus the

impact on the estimate will be zero.

To summarize, our analysis employs two techniques. First, we identify the nearest neighbor to

each of our treatment observations using genetic matching. This non–parametric matching technique

means that we make fewer assumptions about the parametric form of the effect than we would with

a linear or generalized linear (e.g., negative binomial). Based on this sample construction, our

results should be interpreted as an Average Treatment Effect on the Treated (ATT). In other words,

our sample construction implies that our estimates of the effects of licensing on citations have the

most external validity for patent–linked publications whose covariates resemble those that receive

licenses.
19Because we expect the differences in covariates between the treated and control groups after the nearest neighbor

matching to be smaller, the linearity assumption embedded in least–squares is more plausible than it would be for an
unmatched sample. This assumption nonetheless introduces a lack of flexibility into the specification. Rubin (1979)
discusses the value of using these (slightly modified) techniques and concludes that “pair–matching coupled with
regression adjustment on the matched pairs is a quite effective general plan for controlling the bias due to matching
variables, and this combination is clearly superior to regression adjustment” (p. 318).
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5 Results

5.1 The Effects of Licensing on Citations to Patent-Linked Publications

We now turn to estimating the effects of licensing on scientific communication as measured by

citations to patent-linked publications. We report the results of our findings in two ways. First, the

effect can be seen directly through the citation pattern for the treatment group (dashed line with

circles) and the control group (dotted line with squares), as shown in Figure 4.

∗∗∗ Figure 4 Here ∗∗∗

As depicted in Figure 4, patent-linked publications that are licensed receive more citations

commencing two years after a license is executed than do publications that are linked to unlicensed

patents. This pattern of increased citations two years after the license is consistent with a more

gradual expansion of awareness within the research community of the license that increases citations

to the relevant publication only after a lag, reflecting the lack of any public announcement of the

license. In this interpretation, scientists gradually adjust their research agendas to intensify work

in the area of research covered by the license, in response to the positive signal associated with the

license of the commercial or scientific quality of related research.

Figure 5 reports results from the difference–in–differences analysis (Equation 2), confirming the

post–licensing citation pattern presented in Figure 4 and testing for the statistical significance of the

differences in citations between the two groups. The effect of licensing on the number of citations

is near zero and not statistically significant in the first year after the execution of the license (γ

= -0.20 with a standard error of 0.51). The average difference in citations between the treatment

and control groups is 1.72 additional citations received by a paper linked to a licensed patent in

the second year (standard error of 0.68) and 1.68 citations received by such a paper in year t+3

(standard error of 0.77), both of which are significant at the 1% level. This pattern is very similar to

the citation trends depicted in Figure 4 due to the good covariate balance prior to the diff–in–diffs

regression. The magnitude of the differences between the two groups in years t+2 and t+3 implies

that the average publication receives an increase of approximately 25% in citations in these two

years compared to the control group.

∗∗∗ Figure 5 Here ∗∗∗
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Inspection of the residuals after our regressions (not reported) shows that the mean and median

are aligned and that the residuals are distributed approximately normally, supporting the validity

of our model.

5.2 The Effects of Licensing on Citations to Patented Publications Associated

with Research Tools

We now turn our attention to the effects of licensing on patented publications that we believe are

more likely to be associated with research tools. In their test of the effects of patenting on citations

to “research tool”–related publications, Murray and Stern (2007) defined such publications as those

linked to any patents within their sample in the 3–digit patent classes 435 (Chemistry: Molecular

Biology and Microbiology) and 800 (Multicellular Living Organisms and Unmodified Parts Thereof

and Related Processes). A patent class–based definition, however, does not account for the patent’s

use. Instead of employing patent classes, as we noted above, we believe that patented publications

for which MTAs are issued are likely to fall within a rough definition of “research tool.”

Our analysis of the effects of licensing on this class of patented publications restricts the sample to

only those with material transfer agreements.20 Thus, both treatment and the control observations

have MTAs and the difference between them is whether a license is issued.21 Table 3 presents the

covariate balance for this sample.

∗∗∗ Table 3 Here ∗∗∗

Although the difference in means for the control and treatment groups in the MTA–linked

sample is larger in absolute magnitude than that for the full sample reported in Table 2, the MTA

sample reveals fewer statistically significant differences in means. For the MTA–linked sample, only

the t–test of the difference of means for Publication Year is highly significant (at the 1% level),
20We include MTAs that are issued before or after the license. In doing so we assume that an invention receiving

an MTA irrespective of when the MTA was executed (i.e., the execution of the MTA) does not “convert” the material
into a research tool. Restricting the sample to instances where an MTA exists prior to the license could ensure against
possible reverse causality, however. This restriction led to results that are similar in direction, although with much
smaller sample sizes. Thus we report results with the larger sample of MTA–linked inventions.

21Because we also match treatment to control observations based on whether the observation has an MTA, treated
observations with MTAs prior to license are matched to controls that also already have an MTA, while those that
have not received an MTA prior to license are matched to controls that also have not yet received an MTA as of the
license execution date.
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while the difference in distributions between the treatment and control group observations is weakly

significant (10%) only for Journal Impact Factor.

As we did in our analysis for the full sample, we present both the non–parametric citation curve

for the matched samples in Figure 6 and the regression adjusted results in Figure 7 below.

∗∗∗ Figures 6 and 7 Here ∗∗∗

Our difference–in–differences analysis of the effects of licensing on citations to patent–paper

pairs that are associated with MTAs reveals a very different pattern from that observed in the

overall sample. For the overall sample, licensing is associated with an increase in citations to the

publications linked to the underlying patented disclosure. For the MTA–linked sample, however,

licensing is associated with a decline in citations. Using the covariate adjusted values (Figure 7),

the magnitude of the licensing effect is -3.37 citations in year t+1 (standard error of 0.79) and -4.38

in year t+3 (standard error of 1.17). The differences in these two years are statistically significant

at the 1% level, but is not statistically significant from zero in year t+2 (γ = -0.71 with a standard

error of 0.81).22 Overall, these coefficients represent a decrease in citations of approximately 40%–

50% for the average publication, although our small sample size calls for caution in interpreting the

exact magnitude of the effect.

The timing of the “license effect” for citations to MTA–linked patent–paper pairs also suggests a

more rapid negative impact than was observed for the positive effect of licenses on citations in the

overall sample. The apparently more rapid appearance of the negative effects on citations observed

in the MTA sample is broadly consistent with the delays and project abandonment observed in the

surveys by Walsh et al. (2007) and Lei et al. (2009), as well as interviews we conducted for this

study. Moreover, declines in citations for the MTA–linked disclosures that are licensed occur as

early as the year of the execution of the license. Inasmuch as the citations to the focal publication

associated with the patented disclosure appear only after a lag, the speed of this observed effect

suggests that researchers or universities may limit or impose other restrictions on sharing of “research

tools” during the negotiation of the license.23

22We conducted a robustness check using a 2–inventor overlap sample which resulted in coefficients of -4.9***,
-4.7***, and -7.1*** for years t+1, t+2, and t+3 ). Based on these results we do not ascribe any economic meaning
to the unusual result for t+2 in the original sample.

23Note that the identification of any in–year effect is weaker, since the exact timing of the license during the year
is not accounted for in the analysis.
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6 Conclusion

This paper has investigated the effects of licenses on communication among scientists of pub-

lished research results that are linked to patented academic invention disclosures within the Uni-

versity of California system. Our results suggest that in general, licenses on scientific work are

associated with an increase in the number of citations to related publications, but that this effect

differs for a class of patented invention disclosures that we believe includes a high share of research

tools. For these inventions we observe a decrease in the number of citations following a license,

suggesting that the benefits of MTAs for access to research tools noted by Stern (2004) or Walsh

et al. (2003) in their discussions of MTAs may be limited or absent in this sample.

Our results are consistent with other findings in the literature that suggest that licensing may

have a positive signaling effect (e.g., Drivas et al. (2014)), but that licenses on research tools may lead

to restrictions on input materials that are important for follow–on research (Heller and Eisenberg

1998, Walsh et al. 2007).

These findings should be interpreted with caution, however. Our sample of patented publications

represents discoveries made by scientists at a single institution. While the University of California is

the most prolifically patenting university in the U.S. according to a recent study by the U.S. Patent

and Trademark Office (2014), this university may not be representative of all academic institutions.

This study makes four contributions. First, it introduces a novel method for linking patents and

publications associated with an academic research advance, and thereby automates a previously

arduous process that has been difficult to scale up. Second, it operationalizes a definition of research

tools that permits empirical analysis of such discoveries. Third, it employs a matching methodology

that avoids strong parametric assumptions that may not be appropriate for the complex interactions

that underlie journal citation patterns. And finally, but most importantly, this paper contributes

to our understanding of the effect of the licensing of intellectual property rights covering academic

research output on scientific communication.
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Table 1: Summary Statistics for Samples with 3 and 4–Author Publication Matches to Patents†

Samples
Inventor Overlap 3+ 4+
Publications (000) 1.7 0.6
Patents (000) 0.7 0.3
Publications with MTAs 261 79
Publications / Patent 2.4 1.8
Observations in the Life Sciences 49% 44%
Variable Mean††

Citations Per Year 11.4 16.2
(26.1) (36.3)

Average Impact Factor 8.7 11.0
(8.4) (9.8)

Publication Year 2000.7 2000.4
(2.6) (2.8)

Publication Age 3.2 3.3
(2.6) (2.7)

Age at MTA Issuance 2.4 2.6
(2.7) (2.6)

Age at Patent Issuance 3.5 3.5
(2.0) (2.0)

†Sample restricted to those publications with 7 years of citation data (only first 7 years of data included)
††Values in the parentheses are standard deviations.
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seta is applied to the surface With a force perpendicular to 
(56) References Cited the surface. The seta is then pulled With a force parallel to 

the surface so as to preload the adhesive force of the seta. 
U.S. PATENT DOCUMENTS 

4,545,831 A 10/1985 Ornstein .................... .. 156/57 5 Claims, 9 Drawing Sheets 

Pull 
Perpendicular 
to Surface 

R. Full
R. Fearing
T. Kenny
K. Autumn

R. Fearing’s Publications R. Full’s Publications

T. Kenny’s PublicationsK. Autumn’s Publications

3.  Search for Overlap in Publications

4.  Maximum Overlap = Best Match(es)

Figure 1: Inventor–Based Matching Example
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Table 2: Covariate Balance for the Full Licensing Sample

Full Licensing Sample
Covariates Mean Treated Mean Control t–Test KS Test
Publication Age 2.0 2.0 - -
Journal Subject† 4.3 4.3 - -
Patent Issued 0.56 0.56 - -
MTA Issued 0.04 0.04 - -
Journal Impact Factor 7.3 7.1 - -
Publication Year 2000.7 2000.5 ∗ -
Citations in t–1 6.6 6.1 - ∗∗∗
Citations in t–2 4.3 4.2 - -
Citation Slope from t–2 to t–1 2.3 1.9 ∗∗∗ ∗∗∗

Notes:
*** p<0.01 ** p<0.05 * p<0.10
†Journal Subject is a categorical variable, with each subject mapped to a random integer. Therefore the 4.3 listed
has no literal meaning, but the equality between treatment and control, as well as well as the lack of any difference,
reinforce the success of the exact matching.

Table 3: Covariate Balance for the Research Tools Sample

Research Tools Sample
Covariates Mean Treated Mean Control t–Test KS Test
Publication Age 1.9 1.9 - -
Journal Subject 3.9 3.9 - -
Patent Issued 0.5 0.5 - -
MTA Issued 0.3 0.3 - -
Journal Impact Factor 5.2 6.0 - ∗
Publication Year 2001.4 2000.5 ∗∗∗ -
Citations in t–1 5.4 5.0 - -
Citations in t–2 1.2 1.3 - -
Citation Slope from t–2 to t–1 4.3 3.8 - -

Note:
*** p<0.01 ** p<0.05 * p<0.10
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Figure 5: Regression Results of License Effect–Full Licensing Sample

Figure 6: License Effect—Research Tools
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Figure 7: Regression Results of License Effect—Research Tools
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