
Mainak Ghosh, M.Sc.
Doktorand und wissenschaftlicher Mitarbeiter
Innovation and Entrepreneurship Research
+49 89 24246-574
mainak.ghosh(at)ip.mpg.de
Persönliche Website:
Arbeitsbereiche:
Maschinelles Lernen, Natürliche Spracherkennung und -verarbeitung, Sentiment-Analyse
Wissenschaftlicher Werdegang
Seit 03/2020
Wissenschaftlicher Mitarbeiter und Doktorand, Max-Planck-Institut für Innovation und Wettbewerb (Innovation and Entrepreneurship Research)
10/2017 - 11/2019
Master of Science (M.Sc.) im Studiengang “Data Engineering and Analytics”, Technische Universität München (TUM); Titel der Masterarbeit: “Multilingual Opinion Mining on Social Media Comments Using Unsupervised Neural Clustering Methods”
11/2017 - 02/2018
Studentischer Mitarbeiter, Max-Planck-Institut für Sozialrecht und Sozialpolitik, München
05/2013 - 07/2013
Forschungspraktikum, Indian Statistical Institute, Kalkutta, Indien
06/2012 - 07/2012
Praktikum, Globsyn Business School, Kalkutta, Indien
2010 - 2014
Bachelor of Engineering (B.E.) im Studiengang “Computer Science & Technology”, Indian Institute of Engineering Science & Technology, Shibpur, Indien
Beruflicher Werdegang
03/2018 - 03/2020
Werkstudent, IDS GmbH – Analysis and Reporting Services (IDS), München
08/2014 - 09/2017
Softwareingenieur, Acclaris Business Solutions Pvt Ltd, Kalkutta, Indien
Wissenschaftliche Preise und Ehrungen
2013
Zertifikat CCS (Cognizant Certified Student), IT Foundation Skills
2009
Auszeichnung, Mathematischer Kompetenztest, Association for Improvement of Mathematics Teaching (AIMT), Kalkutta, Indien
2008
Zertifikat für besondere Leistungen in Physikwissenschaften und Mechanik
Publikationen
Andere Veröffentlichungen, Presseartikel, Interviews
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), Marseille, 1376-1381.
(2020). An Evaluation of Progressive Neural Networks for Transfer Learning in Natural Language Processing, in:- A major challenge in modern neural networks is the utilization of previous knowledge for new tasks in an effective manner, otherwise known as transfer learning. Fine-tuning, the most widely used method for achieving this, suffers from catastrophic forgetting. The problem is often exacerbated in natural language processing (NLP). In this work, we assess progressive neural networks (PNNs) as an alternative to fine-tuning. The evaluation is based on common NLP tasks such as sequence labeling and text classification. By gauging PNNs across a range of architectures, datasets, and tasks, we observe improvements over the baselines throughout all experiments.
- Conference Paper
- Conference Volume
- Event: 12th Language Resources and Evaluation Conference, Marseille, 2020-05-11
Diskussionspapiere
Logic Mill - A Knowledge Navigation System, arXiv preprint 2301.00200.
(2022).- Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
- https://doi.org/10.48550/arXiv.2301.00200
Vorträge
10.09.2020
Knowledge Mining, Digitalization, Machine Learning
Forschungsseminar
Ort: online (München)